ÌâÄ¿ÄÚÈÝ

12£®ÈçͼËùʾ£¬¹â»¬¹ìµÀABCDÖÐBCΪ$\frac{1}{4}$Ô²»¡£¬Ô²»¡°ë¾¶ÎªR£¬CD²¿·Öˮƽ£¬Ä©¶ËDµãÓëÓÒ¶Ë×ã¹»³¤µÄˮƽ´«ËÍ´øÎÞ·ìÁ¬½Ó£¬´«ËÍ´øÒԺ㶨ËÙ¶ÈvÄæʱÕëת¶¯£¬ÏÖ½«Ò»ÖÊÁ¿ÎªmµÄС»¬¿é´Ó¹ìµÀÉÏAµãÓɾ²Ö¹ÊÍ·Å£¬Aµ½CµÄÊúÖ±¸ß¶ÈΪH£¬Ôò£¨¡¡¡¡£©
A£®»¬¿éÔÚ´«¶¯´øÉÏÏòÓÒÔ˶¯µÄ×î´ó¾àÀëÓë´«¶¯´øËÙ¶ÈvÎÞ¹Ø
B£®Ð¡»¬¿é²»¿ÉÄÜ·µ»ØAµã
C£®ÈôH=4R£¬»¬¿é¾­¹ýCµãʱ¶Ô¹ìµÀѹÁ¦´óСΪ8mg
D£®ÈôH=4R£¬Æ¤´øËÙ¶Èv¡ä=$\sqrt{2gR}$£¬ÔòÎï¿éµÚÒ»´Î»¬ÉÏ´«¶¯´ø£¬ÓÉÓÚĦ²Á¶ø²úÉúµÄÄÚÄÜΪ9mgR

·ÖÎö »¬¿éÔÚ´«ËÍ´øÉÏÊܵ½Ïò×óµÄĦ²ÁÁ¦£¬µ±»¬¿éÇ¡ºÃËٶȵÈÓÚ0ʱ£¬ÏòÓÒÔ˶¯µÄ¾àÀë×î´ó£¬¸ù¾Ý¶¯Äܶ¨Àí¼´¿ÉÇóµÃ½á¹û£®
»¬¿éÔÚ´«ËÍ´øÉÏÔ˶¯Ê±£¬Ë®Æ½·½ÏòÖ»Êܵ½Ä¦²ÁÁ¦µÄ×÷Ó㬸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉÇóµÃ¼ÓËٶȣ¬È»ºó½á¹ûλÒƹ«Ê½ÓëËٶȹ«Ê½£¬ÇóµÃÎïÌåµÄλÒÆ£¬¸ù¾ÝQ=FflÏà¶ÔÇóµÃÈÈÁ¿£®

½â´ð ½â£ºA¡¢ÓÉÓÚ´«ËÍ´øÄæʱÕë·½ÏòÔ˶¯£¬¿ÉÖª»¬¿éÔÚÏòÓÒÔ˶¯µÄ¹ý³ÌÖÐÒ»Ö±×ö¼õËÙÔ˶¯£¬µ±»¬¿éÇ¡ºÃËٶȵÈÓÚ0ʱ£¬ÏòÓÒÔ˶¯µÄ¾àÀë×î´ó£¬¸Ã¾àÀëÓë´«ËÍ´øµÄËÙ¶ÈÎ޹أ®¹ÊAÕýÈ·£»
B¡¢»¬¿éÔÚ´«ËÍ´øÉÏÏÈÏòÓÒ¼õËÙ£¬È»ºóÔÚ´«ËÍ´øÉÏÏò×ó×ö¼ÓËÙÔ˶¯£¬Èç¹û´«ËÍ´øµÄËÙ¶È×ã¹»´ó£¬Ôò»¬¿éÏò×óÒ»Ö±×ö¼ÓËÙÔ˶¯Ê±£¬ÓÉÔ˶¯µÄ¶Ô³ÆÐÔ¿ÉÖª£¬»¬¿éÀ뿪´«ËÍ´øµÄËÙ¶ÈÓ뻬ÉÏ´«ËÍ´øµÄËٶȴóСÏàµÈ£¬¿ÉÒÔ´ïµ½Aµã£®¹ÊB´íÎó£»
C¡¢ÈôH=4R£¬»¬¿é¾­¹ýCµãʱµÄËٶȣº$v=\sqrt{2gH}=\sqrt{2g¡Á4R}=2\sqrt{2gR}$
»¬¿éÊܵ½µÄÖ§³ÖÁ¦ÓëÖØÁ¦µÄºÏÁ¦ÌṩÏòÐÄÁ¦£¬ËùÒÔ£º${F}_{N}-mg=\frac{m{v}^{2}}{R}$
µÃ£ºFN=9mg
¸ù¾ÝÅ£¶ÙµÚÈý¶¨ÂÉ¿ÉÖª£¬»¬¿é¶Ô¹ìµÀѹÁ¦´óСΪ9mg£®¹ÊC´íÎó£»
D¡¢Ñ¡ÔñÏòÓÒΪÕý·½Ïò£¬É軬¿éÓë´«ËÍ´øÖ®¼äµÄ¶¯Ä¦²ÁÒòÊýÊǦ̣¬Ôò»¬¿éµÄ¼ÓËٶȣº$a=\frac{-¦Ìmg}{m}=-¦Ìg$
»¬¿éµÄËÙ¶ÈΪ-$\sqrt{2gR}$ʱ£¬Ê¹ÓõÄʱ¼ä£º
$t=\frac{¡÷v}{a}=\frac{¡÷v}{-¦Ìg}=\frac{-\sqrt{2gR}-2\sqrt{2gR}}{-¦Ìg}$=$\frac{3\sqrt{2gR}}{¦Ìg}$
»¬¿éµÄλÒÆ£º${x}_{1}=vt+\frac{1}{2}a{t}^{2}$
´úÈëÊý¾ÝµÃ£º${x}_{1}=\frac{3R}{¦Ì}$
Õâ¶Îʱ¼äÄÚ´«ËÍ´øµÄλÒÆ£º${x}_{2}=v¡ät=-\sqrt{2gR}•\frac{3\sqrt{2gR}}{¦Ìg}=-\frac{6R}{¦Ì}$
»¬¿éÓë´«ËÍ´øÖ®¼äµÄÏà¶ÔλÒÆ£º$¡÷x={x}_{1}-{x}_{2}=\frac{3R}{¦Ì}-£¨-\frac{6R}{¦Ì}£©=\frac{9R}{¦Ì}$
ÓÉÓÚĦ²Á¶ø²úÉúµÄÄÚÄÜΪ£ºQ=f¡÷x=$¦Ìmg•\frac{9R}{¦Ì}$=9mgR¹ÊDÕýÈ·£®
¹ÊÑ¡£ºAD

µãÆÀ ±¾Ìâ×ۺϿ¼²éÁ˶¯Äܶ¨Àí¡¢»úеÄÜÊغ㶨ÂɺÍÅ£¶ÙµÚ¶þ¶¨ÂÉ£¬½â¾ö±¾ÌâµÄ¹Ø¼üÀíÇåÎïÌåµÄÔ˶¯¹ý³Ì£¬ÖªµÀÎïÌåµÄÔ˶¯¹æÂÉ£¬½áºÏ¶¯Äܶ¨Àí¡¢Å£¶ÙµÚ¶þ¶¨ÂɺÍÔ˶¯Ñ§¹«Ê½½øÐÐÇó½â£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø