题目内容
在厚度为d、折射率为n的大玻璃板的下表面,有一个半径为r的圆形发光面.为了从玻璃板的上方看不见圆形发光面,可在玻璃板的上表面贴一块圆形纸片,所贴纸片的最小半径为多大?
分析:作出光路图,S点为圆形发光面边缘上一点.由该点发出的光线能射出玻璃板的范围由临界光线SA确定,当入射角大于临界角C时,光线就不能射出玻璃板了.根据折射定律和几何知识结合进行求解.
解答:解:根据题述,光路如图所示,图中S点为圆形发光面边缘上一点,
由该点发出的光线能射出玻璃板的范围由临界光线SA确定,当入射角大于临界角C时,光线就不能射出玻璃板了.
图中△r=dtanC=d
,而sinC=
,
则cosC=
,所以△r=
.故所贴纸片的最小半径R=r+△r=r+
.
答:所贴纸片的最小半径为r+
.
由该点发出的光线能射出玻璃板的范围由临界光线SA确定,当入射角大于临界角C时,光线就不能射出玻璃板了.
图中△r=dtanC=d
sinC |
cosC |
1 |
n |
则cosC=
| ||
n |
d | ||
|
d | ||
|
答:所贴纸片的最小半径为r+
d | ||
|
点评:本题关键要理解看不到圆形发光面的原因是由于发生了全反射,再作出光路图,运用折射定律和几何知识结合进行求解.
练习册系列答案
相关题目