题目内容
【题目】一质量m=0.9kg的小球,系于长L=0.9m的轻绳一端,绳的另一端固定在O点,假定绳不可伸长、柔软且无弹性.现将小球从O点的正上方O1点以初速度v0=2.25m/s水平抛出,已知OO1=0.8m,如图所示.(g取10m/s2)试求:
(1)轻绳刚伸直时,绳与竖直方向的夹角θ;
(2)当小球到达O点的正下方时,小球对绳的拉力。
【答案】(1);(2)
【解析】
试题(1)质点做平抛运动,当绳刚伸直时,设绳与竖直方向的夹角为.如图所示:
则,,其中,,
联立解得:,。
(2)绳绷直时刚好水平,如图所示,由于绳不可伸长,故绳绷直瞬间,分速度立即减为零,小球仅有竖直速度,且,小球在竖直平面内做圆周运动,设小球到达O点正下方时的速度为,根据机械能守恒有:,小球在最低点,设绳对球的拉力为F,由牛顿第二定律得:,联立解得:,根据牛顿第三定律知,小球对绳的拉力大小也为,方向竖直向下。
练习册系列答案
相关题目