题目内容
【题目】CD、EF是水平放置的电阻可忽略的光滑平行金属导轨,两导轨距离水平地面高度为H,导轨间距为L,在水平导轨区域存在方向垂直导轨平面向上的有界匀强磁场(磁场区域为CPQE),磁感应强度大小为B,如图所示。导轨左端与一弯曲的光滑轨道平滑连接,弯曲的光滑轨道的上端接有一电阻R。将一阻值也为R的导体棒从弯曲轨道上距离水平金属导轨高度h处由静止释放,导体棒最终通过磁场区域落在水平地面上距离水平导轨最右端水平距离x处。已知导体棒质量为m,导体棒与导轨始终接触良好,重力加速度为g。求:
(1)电阻R中的最大电流和整个电路中产生的焦耳热。
(2)磁场区域的长度d。
【答案】(1) (2)
【解析】试题分析: (1)由机械能守恒定律计算进入磁场的速度大小,再根据法拉第电磁感应定律和闭合电路的欧姆定律求解电流强度;根据平抛运动的知识计算平抛运动的初速度,再根据能量守恒定律计算整个电路中产生的焦耳热;(2)由牛顿第二定律得到安培力与加速度关系,利用微元法求解磁场区域的长度.
(1)由题意可知,导体棒刚进入磁场的瞬间速度最大,产生的感应电动势最大,感应电流最大
由机械能守恒定律有:
解得:
由法拉第电磁感应定律得:
由闭合电路欧姆定律得:
联立解得:
由平抛运动规律可得:
解得:
由能量守恒定律可知整个电路中产生的焦耳热为:
(2)导体棒通过磁场区域时在安培力作用下做变速运动
由牛顿第二定律得:BIL=ma,且,
联立解得:
两边求和得:
又
代入得:
解得:
练习册系列答案
相关题目