ÌâÄ¿ÄÚÈÝ
3£®Á½·Ö×Ó¼äµÄ³âÁ¦ºÍÒýÁ¦µÄºÏÁ¦FÓë·Ö×Ó¼ä¾àÀërµÄ¹ØϵÈçͼÖÐÇúÏßËùʾ£¬ÇúÏßÓërÖá½»µãµÄºá×ø±êΪr0£®Ïà¾àºÜÔ¶µÄÁ½·Ö×ÓÔÚ·Ö×ÓÁ¦×÷ÓÃÏ£¬Óɾ²Ö¹¿ªÊ¼Ï໥½Ó½ü£®ÈôÁ½·Ö×ÓÏà¾àÎÞÇîԶʱ·Ö×ÓÊÆÄÜΪÁ㣬ÏÂÁÐ˵·¨Öв»ÕýÈ·µÄÊÇ£¨¡¡¡¡£©A£® | ÔÚr£¾r0½×¶Î£¬F×öÕý¹¦£¬·Ö×Ó¶¯ÄÜÔö¼Ó£¬·Ö×ÓÊÆÄܼõС | |
B£® | ÔÚr£¼r0½×¶Î£¬F×ö¸º¹¦£¬·Ö×Ó¶¯ÄܼõС£¬·Ö×ÓÊÆÄÜÔö´ó | |
C£® | ÔÚr=r0ʱ£¬·Ö×ÓÊÆÄÜ×îС£¬·Ö×Ó¶¯ÄÜ×î´ó | |
D£® | ÔÚr=r0ʱ£¬·Ö×ÓÊÆÄÜΪÁã |
·ÖÎö ¿ªÊ¼Ê±ÔÚr£¾r0½×¶Î£¬·Ö×ÓÁ¦ÎªÒýÁ¦£¬·Ö×ÓÏ໥¿¿½üʱ·Ö×ÓÁ¦×öÕý¹¦£¬·Ö×ÓÊÆÄܼõС£¬ÔÚr£¼r0½×¶Îʱ£¬·Ö×ÓÁ¦Îª³âÁ¦£¬ÔÙÏ໥¿¿½ü·Ö×ÓÁ¦×ö¸º¹¦£¬·Ö×ÓÊÆÄÜÔö´ó£¬¸ù¾Ý·Ö×ÓÁ¦×ö¹¦Çé¿ö¿ÉÒÔ·ÖÎö·Ö×ÓÊÆÄܵı仯£®
½â´ð ½â£ºA¡¢ÔÚr£¾r0½×¶Î£¬·Ö×ÓÁ¦±íÏÖΪÒýÁ¦£¬ÔÚÁ½·Ö×ÓÏ໥¿¿½üʱ·Ö×ÓÁ¦F×öÕý¹¦£¬·Ö×Ó¶¯ÄÜÔö¼Ó£¬·Ö×ÓÊÆÄܼõС£¬¹ÊAÕýÈ·£»
B¡¢ÔÚr£¼r0½×¶Î£¬·Ö×ÓÁ¦±íÏÖΪ³âÁ¦£¬ÔÚÏ໥¿¿½üʱ·Ö×ÓÁ¦F×ö¸º¹¦£¬·Ö×Ó¶¯ÄܼõС£¬·Ö×ÓÊÆÄÜÔö´ó£»¹ÊBÕýÈ·£®
C¡¢ÓÉÉÏ·ÖÎöÖª£¬·Ö×ÓÊÆÄÜÏȼõС¡¢ºóÔö´ó£¬ÔÚr=r0ʱ£¬·Ö×ÓÊÆÄÜ×îС£¬¶¯ÄÜ×î´ó£®¹ÊCÕýÈ·£»
D¡¢ÈôÁ½·Ö×ÓÏà¾àÎÞÇîԶʱ·Ö×ÓÊÆÄÜΪÁ㣬ÓÉÓÚ´ÓÎÞÇîÔ¶µ½r=r0£¬·Ö×ÓÁ¦Ò»Ö±×öÕý¹¦£¬·Ö×ÓÊÆÄÜÒ»Ö±¼õС£¬ËùÒÔÔÚr=r0ʱ£¬·Ö×ÓÊÆÄÜСÓÚÁ㣬¹ÊD´íÎó£®
±¾ÌâÑ¡²»ÕýÈ·µÄ£¬¹ÊÑ¡£ºD£®
µãÆÀ ·Ö×Ó¼äµÄÊÆÄܼ°·Ö×ÓÁ¦ËäÈ»ÊôÓÚ΢¹ÛÊÀ½çµÄ¹Øϵ£¬µ«ÊÇ¿ÉÔËÓÃÎÒÃÇËùѧ¹ýµÄÁ¦Ñ§Öй¦ÄܹØϵ½øÐзÖÎö£®
A£® | ÔÚÏÔ΢¾µÏ¼ÈÄÜ¿´µ½Ë®·Ö×ÓÒ²ÄÜ¿´µ½Ðü¸¡µÄС̿Á££¬ÇÒË®·Ö×Ó²»Í£µØײ»÷Ì¿Á£ | |
B£® | С̿Á£ÔÚ²»Í£µØ×öÎÞ¹æÔòÔ˶¯£¬Õâ¾ÍÊÇËù˵µÄ²¼ÀÊÔ˶¯ | |
C£® | ԽСµÄÌ¿Á££¬Ô˶¯Ô½Ã÷ÏÔ | |
D£® | ÔÚÏÔ΢¾µÏ¿´ÆðÀ´Á¬³ÉһƬµÄÒºÌ壬ʵ¼ÊÉϾÍÊÇÓÉÐíÐí¶à¶à¾²Ö¹²»¶¯µÄË®·Ö×Ó×é³ÉµÄ |
A£® | arcsin$\frac{{v}^{2}}{Rg}$ | B£® | arctan$\frac{{v}^{2}}{Rg}$ | C£® | $\frac{1}{2}$arcsin$\frac{2{v}^{2}}{Rg}$ | D£® | arcctg$\frac{{v}^{2}}{Rg}$ |
A£® | RA£ºRB=4£º1£¬VA£ºVB=1£º2 | B£® | RA£ºRB=1£º4£¬VA£ºVB=1£º2 | ||
C£® | RA£ºRB=4£º1£¬VA£ºVB=2£º1 | D£® | RA£ºRB=1£º4£¬VA£ºVB=2£º1 |
A£® | -mvºÍ-mgt | B£® | mvºÍmgt | C£® | mvºÍ-mgt | D£® | -mvºÍmgt |
A£® | m£¨$\sqrt{{{v}_{0}}^{2}+2gh}$-v0£© | B£® | m$\sqrt{2gh}$ | C£® | m$\sqrt{{{v}_{0}}^{2}+2gh}$ | D£® | m£¨$\sqrt{2gh}$-v0£© |