题目内容

如图所示,打高尔夫球的人在发球处(该处比球洞所在处低1.75 m)击球,初速度为36 m/s,方向与水平方向成30°角.球恰好进洞,求球在水平方向的位移大小.(忽略空气阻力,g10 m/s2)

 

 

109.2 m

【解析】求解本题的关键是先要算出球的飞行时间.利用斜抛运动位移公式,以及该球到达C处的条件:CD1.75 m,可得到一个关于飞行时间的方程,求解该方程,便可得到所需结果.小球初速度的水平分量和竖直分量分别是

v0xv0cos θ36 cos 30° m/s31.2 m/s

v0yv0sin θ36 sin 30° m/s18.0 m/s

yCD,可得CDv0ytgt2

代入已知量,整理后可得5t218t1.750

其解为t3.5 st0.1 s

其中t0.1 s是对应于B点的解,表示该球自由飞行至B点处所需时间.因此在本题中,应选解t3.5 s.在此飞行时间内,球的水平分速度不变,于是最后可得xv0xt31.2×3.5 m109.2 m.

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网