ÌâÄ¿ÄÚÈÝ
13£®Í¶Ê¯»úÊÇÉϹÅʱ´úµÄÒ»ÖÖ¹¥³ÇÎäÆ÷£¬Ëü¿É°Ñ¾ÞʯͶ½øµÐ·½µÄ³ÇǽºÍ³ÇÄÚ£¬Ôì³ÉÆÆ»µ£¬Í¼Ê¾ÎªÒ»Í¶Ê¯»ú×°Öã¬Í¶Ê¯»ú°ÑÖÊÁ¿ÎªmµÄ¾ÞʯÏÈ´ÓµØÃæÉýµ½ÀëµØhµÄ¸ß¶ÈÔÙÅ×Éä³öÈ¥£¬¼ÙÉè¾Þʯ±»Å×Éä³ýÈ¥ºóËù×öµÄÔ˶¯ÊÇƽÅ×Ô˶¯£¬ÆäÂäµãÀëÅ׳öµãµÄˮƽ¾àÀëΪx£¬²»¼Æ¿ÕÆø×èÁ¦£¬ÖØÁ¦¼ÓËÙ¶ÈΪg£¬Ç󣺣¨1£©¾ÞʯÔÚ×î¸ßµãµÄËٶȴóС£»
£¨2£©Í¶Ê¯»ú°Ñ¾Þʯ´ÓµØÃæÉý¸ß£¬ÔÙÅ×Éä³öÈ¥µÄ¹ý³ÌÖУ¬¶Ô¾Þʯ×öµÄ¹¦£®
·ÖÎö £¨1£©¾Þʯ×öƽÅ×Ô˶¯£¬½«Ô˶¯·Ö½â¼´¿ÉÇó³ö¾ÞʯÔÚ×î¸ßµãµÄËٶȣ»
£¨2£©Í¶Ê¯»ú°Ñ¾Þʯ´ÓµØÃæÉý¸ß£¬ÔÙÅ×Éä³öÈ¥µÄ¹ý³ÌÖУ¬¶Ô¾Þʯ×öµÄ¹¦×ª»¯Îª¾ÞʯµÄ¶¯ÄܺÍÖØÁ¦ÊÆÄÜ£¬¸ù¾Ý¹¦ÄܹØϵ¼´¿ÉÇó³ö£®
½â´ð ½â£º£¨1£©¾Þʯ×öƽÅ×Ô˶¯£¬ÊúÖ±·½Ïò£ºh=$\frac{1}{2}g{t}^{2}$
ËùÒÔÔ˶¯µÄʱ¼ä£ºt=$\sqrt{\frac{2h}{g}}$
ˮƽ·½Ïò£ºx=vt
ËùÒÔ£ºv=$\frac{x}{t}=x•\sqrt{\frac{g}{2h}}$
£¨2£©Í¶Ê¯»ú°Ñ¾Þʯ´ÓµØÃæÉý¸ß£¬ÔÙÅ×Éä³öÈ¥µÄ¹ý³ÌÖУ¬¶Ô¾Þʯ×öµÄ¹¦×ª»¯Îª¾ÞʯµÄ¶¯ÄܺÍÖØÁ¦ÊÆÄÜ£¬¸ù¾Ý¹¦ÄܹØϵµÃ£º
W=mgh+$\frac{1}{2}m{v}^{2}$=$mg£¨h+\frac{{x}^{2}}{4h}£©$
´ð£º£¨1£©¾ÞʯÔÚ×î¸ßµãµÄËٶȴóСÊÇ$x•\sqrt{\frac{g}{2h}}$£»
£¨2£©Í¶Ê¯»ú°Ñ¾Þʯ´ÓµØÃæÉý¸ß£¬ÔÙÅ×Éä³öÈ¥µÄ¹ý³ÌÖУ¬¶Ô¾Þʯ×öµÄ¹¦ÊÇ$mg£¨h+\frac{{x}^{2}}{4h}£©$£®
µãÆÀ ¸ÃÌâÒÔÅ×ʯ»úΪģÐÍ£¬¿¼²éƽÅ×Ô˶¯Ó빦ÄܹØϵ£¬Á½¸ö¹ý³ÌÊÇÏà¶Ô¶ÀÁ¢µÄ£¬·Ö±ðʹÓÃÏàÓ¦µÄ¹«Ê½¼´¿É£®»ù´¡ÌâÄ¿£®
A£® | ζȴ«¸ÐÆ÷ | B£® | ѹÁ¦´«¸ÐÆ÷ | C£® | ¹â´«¸ÐÆ÷ | D£® | ÉùÒô´«¸ÐÆ÷ |
A£® | ¼×µÄƫС | B£® | ÒÒµÄƫС | C£® | ¼×µÄÆ«´ó | D£® | ÒÒµÄÆ«´ó |
A£® | ×ÔÓÉÂäÌåÔ˶¯ | B£® | ƽÅ×Ô˶¯ | C£® | ÔȼõËÙÖ±ÏßÔ˶¯ | D£® | ÔÈËÙÔ²ÖÜÔ˶¯ |
A£® | $\frac{1}{2}$mgv0 | B£® | mg$\sqrt{gh}$ | C£® | mg$\sqrt{2gh}$ | D£® | mgv0 |
A£® | ±ØÓÐÒ»¿ÅºãÐǵÄÖÊÁ¿Îª$\frac{{4{¦Ð^2}{R_1}{{£¨{R_1}+{R_2}£©}^2}}}{{G{T^2}}}$ | |
B£® | ÕâÁ½¿ÅºãÐǵÄÖÊÁ¿Ö®ºÍΪ$\frac{{4{¦Ð^2}{{£¨{R_1}+{R_2}£©}^3}}}{{G{T^2}}}$ | |
C£® | ÕâÁ½¿ÅºãÐǵÄÖÊÁ¿Ö®±ÈΪm1£ºm2=R2£ºR1 | |
D£® | ÕâÁ½¿ÅºãÐǵÄÖÊÁ¿±Ø¶¨ÏàµÈ |
A£® | ͬһζÈÏ£¬ÑõÆø·Ö×ÓµÄËÙÂÊ·Ö²¼³ÊÏÖ³ö¡°Öмä¶à£¬Á½Í·ÉÙ¡±µÄ·Ö²¼¹æÂÉ | |
B£® | Ëæ×ÅζȵÄÉý¸ß£¬Ã¿Ò»¸öÑõÆø·Ö×ÓµÄËÙÂʶ¼Ôö´ó | |
C£® | Ëæ×ÅζȵÄÉý¸ß£¬ÑõÆø·Ö×ÓÖÐËÙÂÊСµÄ·Ö×ÓËùÕ¼µÄ±ÈÀýÉý¸ß | |
D£® | Ëæ×ÅζȵÄÉý¸ß£¬ÑõÆø·Ö×ÓµÄƽ¾ùËÙÂʱäС |