ÌâÄ¿ÄÚÈÝ
£¨1£©ÇâÔ×ÓµÚnÄܼ¶µÄÄÜÁ¿ÎªEn=
£¬ÆäÖÐE1ÊÇ»ù̬ÄÜÁ¿£®¶øn=1£¬2£¬¡£®ÈôÒ»ÇâÔ×Ó·¢ÉäÄÜÁ¿Îª-
E1µÄ¹â×Óºó´¦ÓڱȻù̬ÄÜÁ¿¸ß³ö-
E1µÄ¼¤·¢Ì¬£¬ÔòÇâÔ×Ó·¢Éä¹â×ÓÇ°ºó·Ö±ð´¦ÓÚµÚ¼¸Äܼ¶£¿
£¨2£©ÈçͼËùʾ£¬ÊúֱƽÐÐÖ±ÏßΪÔÈÇ¿µç³¡µÄµç³¡Ïߣ¬µç³¡·½Ïòδ֪£¬A£¬BÊǵ糡ÖеÄÁ½µã£¬ABÁ½µãµÄÁ¬Ïß³¤ÎªlÇÒÓëµç³¡ÏßËù¼ÐµÄÈñ½ÇΪ¦È£®Ò»¸öÖÊÁ¿Îªm£¬µçºÉÁ¿Îª-qµÄ´øµçÁ£×ÓÒÔ³õËÙ¶Èv0´ÓAµã´¹Ö±½øÈëµç³¡£¬¸Ã´øµçÁ£×ÓÇ¡ºÃÄܾ¹ýBµã£®²»¿¼ÂÇ´øµçÁ£×ÓµÄÖØÁ¦´óС£®
¸ù¾ÝÄãѧ¹ýµÄÎïÀíѧ¹æÂɺÍÌâÖÐËù¸øµÄÐÅÏ¢£¬¶Ô·´Ó³µç³¡±¾ÉíÐÔÖʵÄÎïÀíÁ¿£¨ÀýÈçµç³¡Ç¿¶È£©£¬ÄãÄÜ×÷³öÄÄЩ¶¨ÐÔÅжϺÍÇóµÃÄÄЩ¶¨Á¿½á¹û£¿
E1 |
n2 |
3 |
16 |
3 |
4 |
£¨2£©ÈçͼËùʾ£¬ÊúֱƽÐÐÖ±ÏßΪÔÈÇ¿µç³¡µÄµç³¡Ïߣ¬µç³¡·½Ïòδ֪£¬A£¬BÊǵ糡ÖеÄÁ½µã£¬ABÁ½µãµÄÁ¬Ïß³¤ÎªlÇÒÓëµç³¡ÏßËù¼ÐµÄÈñ½ÇΪ¦È£®Ò»¸öÖÊÁ¿Îªm£¬µçºÉÁ¿Îª-qµÄ´øµçÁ£×ÓÒÔ³õËÙ¶Èv0´ÓAµã´¹Ö±½øÈëµç³¡£¬¸Ã´øµçÁ£×ÓÇ¡ºÃÄܾ¹ýBµã£®²»¿¼ÂÇ´øµçÁ£×ÓµÄÖØÁ¦´óС£®
¸ù¾ÝÄãѧ¹ýµÄÎïÀíѧ¹æÂɺÍÌâÖÐËù¸øµÄÐÅÏ¢£¬¶Ô·´Ó³µç³¡±¾ÉíÐÔÖʵÄÎïÀíÁ¿£¨ÀýÈçµç³¡Ç¿¶È£©£¬ÄãÄÜ×÷³öÄÄЩ¶¨ÐÔÅжϺÍÇóµÃÄÄЩ¶¨Á¿½á¹û£¿
·ÖÎö£º£¨1£©¸ù¾ÝÄܼ¶¼äԾǨ·øÉäµÄ¹â×ÓÄÜÁ¿µÈÓÚÁ½Äܼ¶¼äµÄÄܼ¶²î£¬ÒÔ¼°´¦ÓÚ¼¤·¢Ì¬µÄÄÜÁ¿ºÍ»ù̬ÄÜÁ¿µÄ¹ØϵÇó³öÇâÔ×Ó·¢Éä¹â×ÓÇ°ºó·Ö±ð´¦ÓÚµÄÄܼ¶£®
£¨2£©Á£×ÓÔڵ糡ÖÐ×öÀàƽÅ×Ô˶¯£¬½áºÏ´øµçÁ£×ÓÔÚˮƽ·½ÏòºÍÊúÖ±·½ÏòÉϵÄÔ˶¯¹æÂÉÇó³öABÁ½µãµÄµç³¡Ç¿¶È£¬ÒÔ¼°¸ù¾ÝÔÈÇ¿µç³¡µÄµçÊƲîµÄ¹«Ê½Çó³öA¡¢BÁ½µãµÄµçÊƲͨ¹ýÁ£×ӵĵçÐÔÅжϵ糡ǿ¶ÈµÄ·½Ïò£¬´Ó¶øÈ·¶¨A¡¢BÁ½µãµçÊƵĸߵͣ®
£¨2£©Á£×ÓÔڵ糡ÖÐ×öÀàƽÅ×Ô˶¯£¬½áºÏ´øµçÁ£×ÓÔÚˮƽ·½ÏòºÍÊúÖ±·½ÏòÉϵÄÔ˶¯¹æÂÉÇó³öABÁ½µãµÄµç³¡Ç¿¶È£¬ÒÔ¼°¸ù¾ÝÔÈÇ¿µç³¡µÄµçÊƲîµÄ¹«Ê½Çó³öA¡¢BÁ½µãµÄµçÊƲͨ¹ýÁ£×ӵĵçÐÔÅжϵ糡ǿ¶ÈµÄ·½Ïò£¬´Ó¶øÈ·¶¨A¡¢BÁ½µãµçÊƵĸߵͣ®
½â´ð£º½â£º£¨1£©ÉèÇâÔ×Ó·¢Éä¹â×ÓÇ°ºó·Ö±ðλÓÚµÚlÓëµÚmÄܼ¶£¬ÒÀÌâÒâÓУº
-
=-
E1
-E1=-
E1
½âµÃ£ºm=2
l=4
´ð£ºÇâÔ×Ó·¢Éä¹â×ÓÇ°ºó·Ö±ð´¦ÓÚµÚ4Äܼ¶ºÍµÚ2Äܼ¶£®
£¨2£©ÒòÁ£×Ó´ø¸ºµçÇÒÏòÏÂƫת£¬¹Êµç³¡Á¦·½ÏòÏòÏ£¬ËùÒԵ糡·½ÏòÊúÖ±ÏòÉÏ£®
ˮƽ·½ÏòÔÈËÙÔ˶¯£¬ÓУºlsin¦È=v0t
ÊúÖ±·½Ïò×ö³õËÙ¶ÈΪÁãµÄÔȼÓËÙÔ˶¯£¬ÓÐlcos¦È=
at2
Ôò¼ÓËٶȣºa=
ÓÉqE=ma£¬µÃµç³¡Ç¿¶È´óС£ºE=
=
BµãµÄµçÊƸßÓÚAµãµÄµçÊÆ£¬ÓÐA¡¢BÁ½µã¼äµÄµçÊƲîΪ£º
UAB=-Elcos¦È=-
=-
cot2¦È
´ð£ºBµãµÄµçÊƸßÓÚAµãµÄµçÊÆ£¬ÓÐA¡¢BÁ½µã¼äµÄµçÊƲîΪ-
cot2¦È£®
E1 |
l2 |
E1 |
m2 |
3 |
16 |
E1 |
m2 |
3 |
4 |
½âµÃ£ºm=2
l=4
´ð£ºÇâÔ×Ó·¢Éä¹â×ÓÇ°ºó·Ö±ð´¦ÓÚµÚ4Äܼ¶ºÍµÚ2Äܼ¶£®
£¨2£©ÒòÁ£×Ó´ø¸ºµçÇÒÏòÏÂƫת£¬¹Êµç³¡Á¦·½ÏòÏòÏ£¬ËùÒԵ糡·½ÏòÊúÖ±ÏòÉÏ£®
ˮƽ·½ÏòÔÈËÙÔ˶¯£¬ÓУºlsin¦È=v0t
ÊúÖ±·½Ïò×ö³õËÙ¶ÈΪÁãµÄÔȼÓËÙÔ˶¯£¬ÓÐlcos¦È=
1 |
2 |
Ôò¼ÓËٶȣºa=
2
| ||
lsin2¦È |
ÓÉqE=ma£¬µÃµç³¡Ç¿¶È´óС£ºE=
ma |
q |
2m
| ||
qlsin2¦È |
BµãµÄµçÊƸßÓÚAµãµÄµçÊÆ£¬ÓÐA¡¢BÁ½µã¼äµÄµçÊƲîΪ£º
UAB=-Elcos¦È=-
2m
| ||
qsin2¦È |
2m
| ||
q |
´ð£ºBµãµÄµçÊƸßÓÚAµãµÄµçÊÆ£¬ÓÐA¡¢BÁ½µã¼äµÄµçÊƲîΪ-
2m
| ||
q |
µãÆÀ£º±¾Ì⿼²éÁËÄܼ¶µÄԾǨÒÔ¼°´øµçÁ£×ÓÔڵ糡ÖеÄÔ˶¯£®µÚ¶þÎÊÊǵÀ¿ª·ÅÌ⣬¹Ø¼üץסÁ£×ÓµÄÔ˶¯¹æÂɽøÐÐÇó½â£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿