题目内容
(20分)如图甲,在圆柱形区域内存在一方向竖直向下、磁感应强度大小为B的匀强磁场,在此区域内,沿水平面固定一半径为r的圆环形光滑细玻璃管,环心0在区域中心。一质量为m、带电量为q(q>0)的小球,在管内沿逆时针方向(从上向下看)做圆周运动。已知磁感应强度大小B随时间t的变化关系如图乙所示,其中。设小球在运动过程中电量保持不变,对原磁场的影响可忽略。
(1)在t=0到t=T0 这段时间内,小球不受细管侧壁的作用力,求小球的速度大小;
(2)在竖直向下的磁感应强度增大过程中,将产生涡旋电场,其电场线是在水平面内一系列沿逆时针方向的同心圆,同一条电场线上各点的场强大小相等。试求t=T0 到t=1.5T0 这段时间内:
①细管内涡旋电场的场强大小E;
②电场力对小球做的功W。
【答案】
;;
【解析】(1)小球做圆周运动向心力由洛伦磁力提供:设速度为v,有: 解得:
(2)在磁场变化过程中,圆管所在的位置会产生电场,根据法拉第感应定律可知,电势差
电场处处相同,认为是匀强电场则有: 又因为
得到场强
(3)、小球在电场力的作用下被加速。加速度的大小为:
而电场力为:
在T0—1.5T0时间内,小球一直加速,最终速度为
电场力做的功为:
得到电场力做功:
练习册系列答案
相关题目