题目内容
如图所示,质量为0.05kg,长l=0.1m的铜棒,用长度也为l的两根轻软导线水平悬挂在竖直向上的匀强磁场中,磁感应强度为B=0.5T.不通电时,轻线在竖直方向,通入恒定电流后,棒向外偏转的最大角度θ=37°,求此棒中恒定电流多大?(不考虑棒摆动过程中产生的感应电流,g取10N/kg)
同学甲的解法如下:对铜棒受力分析如图所示:
当最大偏转角θ=37°时,棒受力平衡,有:
FTcosθ=mg,FTsinθ=F安=BIl
得I==A=7.5A
同学乙的解法如下:
F安做功:WF=Fx1=BIlsin37°×lsin37°=BI(lsin37°)2
重力做功:
WG=-mgx2=-mgl(1-cos37°)
由动能定理得:WF+WG=0
代入数据解得:I=A≈5.56A
请你对甲、乙两同学的解法作出评价:若你对两者都不支持,则给出你认为正确的解答.
评价见解析 3.33A
解析: 甲同学的错误原因:认为物体速度为零时,一定处于平衡位置,或者认为偏角最大时为平衡位置.
乙同学的错误原因:将安培力表达式误写为
F安=BIlsin37°,应为:F安=BIl.
正确的解法如下:铜棒向外偏转过程中
F安做功:WF=Fx1=BIl×lsin37°
重力做功:
WG=-mgx2=-mgl(1-cos37°)
由动能定理得:WF+WG=0
代入数据解得:I=A≈0.33A.
练习册系列答案
相关题目