题目内容

一块N型半导体薄片(称霍尔元件),其横载面为矩形,体积为b×c×d,如图所示.已知其单位体积内的电子数为n、电阻率为ρ、电子电荷量e.将此元件放在匀强磁场中,磁场方向沿Z轴方向,并通有沿x轴方向的电流I.
(1)此元件的CC′两个侧面中,哪个面电势高?
(2)试证明在磁感应强度一定时,此元件的CC′两个侧面的电势差与其中的电流成正比
(3)磁强计是利用霍尔效应来测量磁感应强度B 的仪器.其测量方法为:将导体放在匀强磁场之中,用毫安表测量通以电流I,用毫伏表测量C、C,间的电压U CC′,就可测得B.若已知其霍尔系数.并测得UCC′=0.6mV,I=3mA.试求该元件所在处的磁感应强度B的大小.
【答案】分析:(1)金属导体中移动的是自由电子,根据左手定则判定电子的偏转方向,从而得出元件的CC′两个侧面的电势的高低.
(2)最终电子在洛伦兹力和电场力的作用下处于平衡,根据平衡,结合电流的微观表达式,证明出两个侧面的电势差与其中的电流成正比.
(3)根据证明出的电势差和电流的关系求出磁感应强度的大小.
解答:解:(1)电流沿x轴正方向,知电子流动的方向沿x轴负方向,根据左手定则,知电子向C侧面偏转,所以C侧面得到电子带负电,C′侧面失去电子带正电.故C'面电势较高.
(2)当电子受力平衡时有:.得U=vBd.电流的微观表达式I=nevS=nevbd.所以v=Inebd.U=.知两个侧面的电势差与其中的电流成正比.
(3)UCC′= I,则B==
故该元件所在处的磁感应强度B的大小为0.02T.
点评:解决本题的关键掌握左手定则判定洛伦兹力的方向,以及知道最终电子受电场力和洛伦兹力处于平衡.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网