ÌâÄ¿ÄÚÈÝ
ÈçͼËùʾ£¬Ò»¸ö¹Ì¶¨µÄµ¯ÐԵȱßÈý½ÇÐοò¼ÜABC£¬±ß³¤ÎªL£¬ÔÚ¿òÄÚÓд¹Ö±ÓÚÖ½ÃæÏòÀïµÄÔÈÇ¿´Å³¡£¬´Å¸ÐӦǿ¶ÈΪB£®ÔÚAB±ßµÄÖеãÓÐÒ»¸öС¿×£¬ÏÖÔÚÓÐÒ»¸öµçÁ¿Îª+q¡¢ÖÊÁ¿ÎªmÇÒ²»¼ÆÖØÁ¦µÄ΢Á££¬ÒÔijһ³õËٶȴ¹Ö±ÓÚABÉäÈë¿òÄÚ£¬Î¢Á£Óë¿òÄÚ±Ú´¹Ö±ÅöײÇÒÄÜÁ¿ÓëµçÁ¿¾ù²»±ä£¬Åöײʱ¼äºöÂÔ²»¼Æ£¬¾¹ýÈô¸É´ÎÕâÑùµÄÅöײºóÓÖ´ÓÈëÉäµãÉä³ö£®Çó£º
£¨1£©´ÓÉäÈë¿òÄÚµ½Éä³ö¿òµÄ×î¶Ìʱ¼äÒÔ¼°¶ÔÓ¦µÄ³õËÙ¶ÈV0£»
£¨2£©ËùÓÐÂú×ãÌõ¼þµÄ³õËٶȼ°¶ÔÓ¦µÄ¿òÄÚÔ˶¯Ê±¼äµÄ±í´ïʽ£®
£¨1£©´ÓÉäÈë¿òÄÚµ½Éä³ö¿òµÄ×î¶Ìʱ¼äÒÔ¼°¶ÔÓ¦µÄ³õËÙ¶ÈV0£»
£¨2£©ËùÓÐÂú×ãÌõ¼þµÄ³õËٶȼ°¶ÔÓ¦µÄ¿òÄÚÔ˶¯Ê±¼äµÄ±í´ïʽ£®
·ÖÎö£º£¨1£©Î¢Á£ÉäÈë´Å³¡ºó×öÔÈËÙÔ²ÖÜÔ˶¯£¬µ±Î¢Á£ÓëÈý½ÇÐοò¼ÜÅöײÁ½´Îʱ£¬Ô˶¯Ê±¼ä×î¶Ì£¬»³ö¹ì¼££¬Çó³öÖÜÆÚ£¬Ôٵõ½×î¶Ìʱ¼ä£®Óɼ¸ºÎ֪ʶÇó³ö¹ì¼£µÄ°ë¾¶£¬ÓÉÅ£¶ÙµÚ¶þ¶¨ÂÉÇó³ö³õËٶȣ®
£¨2£©»³ö¹ì¼£¿ÉÄܵÄÇé¿ö£¬¸ù¾Ý¼¸ºÎ֪ʶµÃµ½¹ì¼£°ë¾¶ÓëÈý½ÇÐα߳¤µÄ¹Øϵ£¬ÓÉÅ£¶ÙµÚ¶þ¶¨Âɼ´¿ÉÇó½â³õËÙ¶ÈÂú×ãµÄÌõ¼þ£¬ÓÉʱ¼äÓëÖÜÆڵĹØϵÇó³öʱ¼ä£®
£¨2£©»³ö¹ì¼£¿ÉÄܵÄÇé¿ö£¬¸ù¾Ý¼¸ºÎ֪ʶµÃµ½¹ì¼£°ë¾¶ÓëÈý½ÇÐα߳¤µÄ¹Øϵ£¬ÓÉÅ£¶ÙµÚ¶þ¶¨Âɼ´¿ÉÇó½â³õËÙ¶ÈÂú×ãµÄÌõ¼þ£¬ÓÉʱ¼äÓëÖÜÆڵĹØϵÇó³öʱ¼ä£®
½â´ð£º½â£º£¨1£©Èçͼ£¬ÓÉʱ¼ä×î¶ÌÖªµÀ΢Á£ÓëAC¡¢BC±ß¸÷Åöײһ´Îºó´ÓAB±ßС¿×·É³öÔò·Ö±ðÓУº
tmin=
T=
¶ÔÓ¦µÄ°ë¾¶Îª£ºRmax=
L=
½âµÃ£ºv0=
£¨2£©Èçͼ£¬RÓëLÖ®¼äÂú×ãÏÂʽ¼´¿É£º
R£¨2n+1£©=
L¡¡¡¡£¨n=0¡¢1¡¢2¡£©
¼´µÃ£ºR=
=
½âµÃ£ºv0=
£¨n=0¡¢1¡¢2¡£©
t=
T+3nT=
(6n+1)£¨n=0¡¢1¡¢2¡£©
´ð£º
£¨1£©´ÓÉäÈë¿òÄÚµ½Éä³ö¿òµÄ×î¶Ìʱ¼äΪ
£¬¶ÔÓ¦µÄ³õËÙ¶Èv0ÊÇ
£®
£¨2£©ËùÓÐÂú×ãÌõ¼þµÄ³õËÙ¶ÈÊÇ
£¨n=0¡¢1¡¢2¡£©£¬¶ÔÓ¦µÄ¿òÄÚÔ˶¯Ê±¼äµÄ±í´ïʽΪt=
T+3nT=
(6n+1)£¨n=0¡¢1¡¢2¡£©£®
tmin=
1 |
2 |
¦Ðm |
Bq |
¶ÔÓ¦µÄ°ë¾¶Îª£ºRmax=
1 |
2 |
mv0 |
Bq |
½âµÃ£ºv0=
BqL |
2m |
£¨2£©Èçͼ£¬RÓëLÖ®¼äÂú×ãÏÂʽ¼´¿É£º
R£¨2n+1£©=
1 |
2 |
¼´µÃ£ºR=
L |
2(2n+1) |
mv0 |
Bq |
½âµÃ£ºv0=
BqL |
2(2n+1)m |
t=
1 |
2 |
¦Ðm |
Bq |
´ð£º
£¨1£©´ÓÉäÈë¿òÄÚµ½Éä³ö¿òµÄ×î¶Ìʱ¼äΪ
¦Ðm |
Bq |
BqL |
2m |
£¨2£©ËùÓÐÂú×ãÌõ¼þµÄ³õËÙ¶ÈÊÇ
BqL |
2(2n+1)m |
1 |
2 |
¦Ðm |
Bq |
µãÆÀ£º±¾ÌâҪͨ¹ý»¹ì¼££¬·ÖÎöÁ£×ÓÔ˶¯µÄʱ¼ä£¬¿¼²éÔËÓÃÊýѧ·½·¨½â¾öÎïÀíÎÊÌâµÄÄÜÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿