题目内容
竖直放置的一对平行金属板的左极板上,用长为l的轻质绝缘细线悬挂一个带电量为q质量为 m的小球,将平行金属板按如图所示的电路图连接.当滑动变阻器R在a位置时,绝缘线与左极板的夹角为θ1=30°,当将滑片缓慢地移动到b位置时,夹角为θ2=60°.两板间的距离大于l,重力加速度为g.问:
(1)小球在上述两个平衡位置时,平行金属板上电势差之比U1:U2=?
(2)若保持变阻器滑片位置在a处不变,对小球再施加一个拉力,使绝缘线与竖直方向的夹角从θ1=30°缓慢地增大到θ2=60°,则此过程中拉力做的功W=?
(1)小球在上述两个平衡位置时,平行金属板上电势差之比U1:U2=?
(2)若保持变阻器滑片位置在a处不变,对小球再施加一个拉力,使绝缘线与竖直方向的夹角从θ1=30°缓慢地增大到θ2=60°,则此过程中拉力做的功W=?
(1)小球处于静止状态,受力情况如图所示:
由平衡条件得:
qE |
mg |
设两极板间的距离为d,则U=Ed
所以:在两个平衡位置时,两金属板间电势差之比为:U1:U2=tan30°:tan60°=1:3
(2)设该过程拉力对小球做功W,用动能定理得:W+qEl(sin60°-sin30°)-mgl(cos30°-cos60°)=0
又 qE=mgtan30°
解得 W=(
2
| ||
3 |
答:(1)小球在上述两个平衡位置时,平行金属板上电势差之比U1:U2=1:3.
(2)若保持变阻器滑片位置在a处不变,对小球再施加一个拉力,使绝缘线与竖直方向的夹角从θ1=30°缓慢地增大到θ2=60°,则此过程中拉力做的功W=(
2
| ||
3 |
练习册系列答案
相关题目