ÌâÄ¿ÄÚÈÝ
11£®ÈçͼËùʾ£¬Ö½ÃæÄÚÓб߳¤ÎªlµÄÕý·½ÐÎÇøÓòAºÍ¿í¶ÈΪl£¬³¤Îª3lµÄ³¤·½ÐÎÇøÓòB£¬ÇøÓòAÄÚ´æÔÚ×ÅˮƽÏò×ó¡¢³¡Ç¿´óСΪE0µÄÔÈÇ¿µç³¡£¬ÇøÓòA×ó±ß½çÖеãO´¦¿É²»¶Ï¹©¸ø³õËÙ¶ÈΪÁ㣬´øµçÁ¿Îªq£¬ÖÊÁ¿ÎªmµÄ´ø¸ºµçµÄÁ£×Ó£¬µ¥Î»Ê±¼ä¹©¸øÁ£×ÓÊýÁ¿Îªn£¬ÇøÓòBÄÚ´æÔÚÒ»¸ö·½ÏòÏòÏ£¬³¡Ç¿´óСÓëʱ¼ä³ÉÕý±ÈµÄÔÈÇ¿µç³¡£¨E=kt£¬µ±ÓÐÁ£×Ó¸Õ½øÈëÇøÓòBʱ¿ªÊ¼¼Æʱ£©£¬²»¼ÆÖØÁ¦£¬¿ÕÆø×èÁ¦¼°Á£×Ó¼äµÄÏ໥×÷Óã¬ÓÉÓÚÁ£×ÓµÄËٶȺܴó£¬Ô˶¯Ê±¼ä¼«¶Ì£¬Á£×Ó´Ó½øÈëÇøÓòBµ½×îÖÕÀ뿪ÇøÓòBµÄ¹ý³ÌÖе糡ǿ¶È¿ÉÈÏΪ²»±äÇ󣺣¨1£©¸Õ½øÈëÇøÓòBʱÁ£×ÓËÙ¶ÈÊǶà´ó£¿
£¨2£©´ÓMN¶Î±ß½çÉä³öµÄÁ£×ÓÊýÓжàÉÙ£¿
£¨3£©ÈôÔÚÇøÓòBÉÏ·½Ìí¼Ó·¶Î§×ã¹»´óµÄ´¹Ö±Ö½ÃæÏòÀïµÄÔÈÇ¿´Å³¡£¬¿Éʹ´ÓMµãÉä³öµÄÁ£×Ó·µ»ØÇøÓòB²¢´Ó¾àÉϱ߽ç$\frac{3l}{8}$µÄPµãÉä³ö£¨½ø³ö´Å³¡µÄʱ¼äÒ²ºöÂÔ²»¼Æ£©£¬ÇóÂú×ãÌõ¼þµÄ´Å³¡µÄ¸ÐӦǿ¶ÈµÄ¿ÉÄÜÖµ£¿
·ÖÎö £¨1£©´øµçÁ£×ÓÔÚÇøÓòAÖмÓËÙ£¬Óɶ¯Äܶ¨ÀíÇó¼ÓËÙ»ñµÃµÄËٶȣ®
£¨2£©´øµçÁ£×Ó½øÈëÇøÓòBÖÐ×öÀàƽÅ×Ô˶¯£¬Ë®Æ½·½Ïò×÷ÔÈËÙÔ˶¯£¬ÊúÖ±·½Ïò×÷ÔȼÓËÙÔ˶¯£¬¸ù¾ÝˮƽλÒƺÍÊúֱλÒÆ£¬ÓÉλÒÆʱ¼ä¹«Ê½·Ö±ðÁÐʽ£¬¿ÉµÃµ½´ÓMµãºÍNµãÉä³öµÄÁ£×ÓÀàƽÅ×Ô˶¯µÄʱ¼ä£¬µÃµ½Ê±¼ä²î£¬¼´¿ÉÇóµÃÁ£×ÓÊý£®
£¨3£©´ÓMµãÉä³öµÄ´øµçÁ£×Ó½øÈë´Å³¡ºó×÷ÔÈËÙÔ²ÖÜÔ˶¯£¬ÓÉÂåÂ××ÈÁ¦³äµ±ÏòÐÄÁ¦£¬ÓÉÅ£¶ÙµÚ¶þ¶¨Âɵõ½°ë¾¶±í´ïʽ£®Á£×Ó·µ»Øµç³¡ºó×÷ÀàбÅ×Ô˶¯£¬ÔËÓÃÔ˶¯µÄ·Ö½â·¨£¬¶ÔˮƽºÍÊúÖ±Á½¸ö·½ÏòµÄλÒÆ·Ö±ðÁÐʽ£¬Çó³ö¿ÉÄܵÄʱ¼ä£¬´Ó¶ø´úÈë´Å³¡·½³Ì£¬Çó³ö¿ÉÄܵÄBµÄÖµ£®
½â´ð ½â£º£¨1£©ÉèËٶȴóСΪV£¬¶ÔÁ£×Ó´Ó³ö·¢ÖÁ½øÈëÇøÓòBµÄ¹ý³ÌÓ¦Óö¯Äܶ¨Àí£º
qE0l=$\frac{1}{2}m{v}^{2}$
½âµÃ£ºv=$\sqrt{\frac{2q{E}_{0}l}{m}}$
£¨2£©ÉèÓÉNµãÉä³öʱµç³¡µÄ³¡Ç¿´óСΪEN£¬Á£×Óͨ¹ýµç³¡Ê±¼äΪ¡÷tN£®
ˮƽ·½Ïò 2l=v¡÷tN
ÊúÖ±·½Ïò $\frac{l}{2}$=$\frac{1}{2}$•$\frac{q{E}_{N}}{m}¡÷{t}_{N}^{2}$
ÉèÓÉMµãÉä³öʱµç³¡µÄ³¡Ç¿´óСΪEM£¬Á£×Óͨ¹ýµç³¡Ê±¼äΪ¡÷tM
ˮƽ·½Ïò l=v¡÷tM
ÊúÖ±·½Ïò $\frac{l}{2}$=$\frac{1}{2}$•$\frac{q{E}_{M}}{m}¡÷{t}_{M}^{2}$
µÃMNÉä³öÁ£×Ó×ÜÊý N=n£¨¡÷tN-¡÷tM£©
ÓÖ E=kt
ÁªÁ¢µÃ N=$\frac{3n{E}_{0}}{2k}$
£¨3£©ÉèÁ£×Ó¾¹ýMµãʱµÄËٶȴóСΪv¡ä
ÓÉ£¨2£©Öª EM=2E0£¬
Óɶ¯Äܶ¨ÀíµÃ£º
qE0l+qEM$•\frac{l}{2}$=$\frac{1}{2}m{v}^{2}$
ÇóµÃ£ºv¡ä=2$\sqrt{\frac{q{E}_{0}l}{m}}$
Éä³öµç³¡Ê±Ëٶȷ½ÏòÓë±ß½ç³É¦È½Ç£¬ÔòÓУºv¡äcos¦È=v
½âµÃ£º¦È=45¡ã
¸ù¾Ý¶Ô³ÆÐԺͿռä¹Øϵ£¬Á£×ÓÓɴų¡·µ»Øµç³¡Ê±Óëˮƽ·½Ïò¼Ð½ÇÒ²ÊǦÈ=45¡ã£¬Ôڴų¡ÖÐ×öËÄ·ÖÖ®Ò»Ô²ÖÜÔ˶¯£®
Ôڴų¡ÖÐ qv¡äB=m$\frac{{v}^{2}}{r}$
ˮƽ·½Ïò 2l-$\sqrt{2}$r=vt
ÊúÖ±·½Ïò v¡äsin¦È•t-$\frac{1}{2}•\frac{q{E}_{M}}{m}{t}^{2}$=$\frac{3}{8}$l
ÁªÁ¢ÇóµÃ t1=$\frac{3}{4}$$\sqrt{\frac{2ml}{q{E}_{0}}}$£¬t2=$\frac{1}{4}$$\sqrt{\frac{2ml}{q{E}_{0}}}$
´úÈë´Å³¡·½³ÌµÃ B1=4$\sqrt{\frac{2m{E}_{0}}{ql}}$£¬B2=$\frac{4}{3}$$\sqrt{\frac{2m{E}_{0}}{ql}}$
ÈçͼËùʾ¿ÉÄÜ´æÔÚÁ½ÖÖÇé¿ö£®
´ð£º
£¨1£©¸Õ½øÈëÇøÓòBʱÁ£×ÓËÙ¶ÈÊÇ$\sqrt{\frac{2q{E}_{0}l}{m}}$£®
£¨2£©´ÓMN¶Î±ß½çÉä³öµÄÁ£×ÓÊýÓÐ$\frac{3n{E}_{0}}{2k}$£®
£¨3£©Âú×ãÌõ¼þµÄ´Å³¡µÄ¸ÐӦǿ¶ÈµÄ¿ÉÄÜֵΪ4$\sqrt{\frac{2m{E}_{0}}{ql}}$ºÍ$\frac{4}{3}$$\sqrt{\frac{2m{E}_{0}}{ql}}$£®
µãÆÀ ±¾ÌâÊÇ´øµçÁ£×ÓÔÚ×éºÏ³¡ÖÐÔ˶¯µÄÎÊÌ⣬½âÌâ¹Ø¼üÒªÕÆÎյ糡ÖÐƫתµÄÑо¿·½·¨£ºÔ˶¯µÄ·Ö½â·¨£¬´Å³¡ÖÐÔ²ÖÜÔ˶¯µÄÑо¿·½·¨£º»³öÁ£×ÓµÄÔ˶¯¹ì¼££¬ÔËÓü¸ºÎ֪ʶÇó½â¹ì¼£°ë¾¶£®
A£® | ÉþOAµÄÀÁ¦´óÓÚÉþOBµÄÀÁ¦ | |
B£® | ÉþOBµÄÀÁ¦´óÓÚÉþOAµÄÀÁ¦ | |
C£® | mÊܵ½Ë®Æ½ÃæµÄ¾²Ä¦²ÁÁ¦µÄ·½ÏòˮƽÏòÓÒ | |
D£® | mÊܵ½Ë®Æ½ÃæµÄ¾²Ä¦²ÁÁ¦µÄ·½ÏòˮƽÏò×ó |
A£® | ¹ì¼£ÎªPa£¬ÖÁÆÁµÄʱ¼ä½«Ð¡ÓÚt | B£® | ¹ì¼£ÎªPa£¬ÖÁÆÁµÄʱ¼ä½«´óÓÚt | ||
C£® | ¹ì¼£ÎªPb£¬ÖÁÆÁµÄʱ¼ä½«µÈÓÚt | D£® | ¹ì¼£ÎªPc£¬ÖÁÆÁµÄʱ¼ä½«Ð¡ÓÚt |