题目内容
如图所示,长为L的木板A静止在光滑的水平桌面上,A的左端上方放有小物体B(可视为质点),一端连在B上的细绳,绕过固定在桌子边沿的定滑轮后,另一端连在小物体C上,设法用外力使A、B静止,此时C被悬挂着。A的右端距离滑轮足够远,C距离地面足够高。已知A的质量为6m,B的质量为3m,C的质量为m。现将C物体竖直向上提高距离2L,同时撤去固定A、B的外力。再将C无初速释放,当细绳被拉直时B、C速度的大小立即变成相等,由于细绳被拉直的时间极短,此过程中重力和摩擦力的作用可以忽略不计,细绳不可伸长,且能承受足够大的拉力。最后发现B在A上相对A滑行的最大距离为。细绳始终在滑轮上,不计滑轮与细绳之间的摩擦,计算中可认为A、B之间的最大静摩擦力等于滑动摩擦力,取重力加速度g=10m/s2。
(1)求细绳被拉直前瞬间C物体速度的大小υ0;
(2)求细绳被拉直后瞬间B、C速度的大小υ;
(3)在题目所述情景中,只改变C物体的质量,可以使B从A上滑下来。
设C的质量为km,求k至少为多大?
(1)C做自由落体运动,下降高度为2L时的速度为v0,根据得v0=
(2)此时细绳被拉直,B、C速度的大小立即变成v,设绳子对B、C的冲量大小为I,根据动量定理得
对B
对C
解得B、C速度的大小v=
(3)设C物体的质量为km,A、B之间的动摩擦因数为μ
由(2)可知,细绳被拉直时B、C速度的大小v´´=
此后B物体的加速度
A物体的加速度
经时间t,B物体的速度
B物体的位移
同样,A物体的速度
A物体的位移
(i)根据题意,若k=1,当v1=v2 时,x1-x2 =,解μ=0.4;
(ii)要使v1=v2 时,x1-x2 =L,利用(i)求得的动摩擦因数μ,
可得k==1.29;
即C物体的质量至少为1.29m时,才可以使B物体从A上滑下来。
【解析】略