ÌâÄ¿ÄÚÈÝ
18£®Ä³ÊµÑéС×éÀûÓÃÀÁ¦´«¸ÐÆ÷ºÍËٶȴ«¸ÐÆ÷̽¾¿¡°¶¯Äܶ¨Àí¡±£®Èçͼ1Ëùʾ£¬ËûÃǽ«ÀÁ¦´«¸ÐÆ÷¹Ì¶¨ÔÚС³µÉÏ£¬Óò»¿ÉÉ쳤µÄϸÏß½«Æäͨ¹ýÒ»¸ö¶¨»¬ÂÖÓë¹³ÂëÏàÁ¬£¬ÓÃÀÁ¦´«¸ÐÆ÷¼Ç¼С³µÊܵ½ÀÁ¦µÄ´óС£®ÔÚˮƽ×ÀÃæÉÏÏà¾à50.0cmµÄA¡¢BÁ½µã¸÷°²×°Ò»¸öËٶȴ«¸ÐÆ÷£¬¼Ç¼С³µÍ¨¹ýA¡¢BµãʱµÄËٶȴóС£¬Ð¡³µÖпÉÒÔ·ÅÖÃíÀÂ룮£¨1£©ÊµÑéÖ÷Òª²½ÖèÈçÏ£º
¢Ù²âÁ¿Ð¡³µºÍÀÁ¦´«¸ÐÆ÷µÄ×ÜÖÊÁ¿M1£»°ÑϸÏßµÄÒ»¶Ë¹Ì¶¨ÔÚÀÁ¦´«¸ÐÆ÷ÉÏ£¬ÁíÒ»¶Ëͨ¹ý¶¨»¬ÂÖÓë¹³ÂëÏàÁ¬£»ÕýÈ·Á¬½ÓËùÐèµç·£®
¢Ú½«Ð¡³µÓÉCµãÊÍ·Å£¬Ð¡³µÔÚϸÏßÀ¶¯ÏÂÔ˶¯£¬¼Ç¼ϸÏßÀÁ¦¼°Ð¡³µÍ¨¹ýA¡¢BµãʱµÄËٶȣ®
¢ÛÔÚС³µÖÐÔö¼Ó»ò¼õÉÙíÀÂ룬Öظ´¢ÚµÄ²Ù×÷£®
ÔÚÒÔÉÏʵÑéÖУ¬ÒÅ©ÁËƽºâС³µËùÊܵÄĦ²ÁÁ¦²½Ö裮
£¨2£©ÏÂÁбí¸ñÊÇËûÃÇÓÃÕýÈ··½·¨²âµÃµÄÒ»×éÊý¾Ý£¬ÆäÖÐMÊÇM1ÓëС³µÖÐíÀÂëÖÊÁ¿M2Ö®ºÍ£¬|v22-v12|ÊÇÁ½¸öËٶȴ«¸ÐÆ÷¼Ç¼ËٶȵÄƽ·½²î£¬¿ÉÒԾݴ˼ÆËã³ö¶¯Äܱ仯Á¿¡÷E£¬FÊÇÀÁ¦´«¸ÐÆ÷²âµÃµÄÀÁ¦£¬WÊÇFÔÚA¡¢B¼äËù×öµÄ¹¦£®±í¸ñÖеġ÷E3=0.600J£¬W3=0.610J£®£¨½á¹û±£ÁôÈýλÓÐЧÊý×Ö£©
Êý¾Ý¼Ç¼±í
´ÎÊý | M/kg | $\frac{£¨{{v}_{2}}^{2}-{{v}_{1}}^{2}£©}{£¨{m}^{2}•{s}^{-2}£©}$ | ¡÷E/J | F/N | W/J |
1 | 0.500 | 0.76 | 0.190 | 0.400 | 0.200 |
2 | 0.500 | 1.65 | 0.413 | 0.840 | 0.420 |
3 | 0.500 | 2.40 | ¡÷E3 | 1.220 | W3 |
4 | 1.000 | 2.40 | 1.200 | 2.420 | 1.210 |
5 | 1.000 | 2.84 | 1.420 | 2.860 | 1.430 |
£¨4£©¸ù¾Ý¡÷E-WͼÏߣ¬¿ÉµÃÔÚʵÑéÎó²îÔÊÐíµÄ·¶Î§ÄÚ£¬ºÏÍâÁ¦Ëù×öµÄ¹¦µÈÓÚÎïÌ嶯ÄܵÄÔöÁ¿½áÂÛ£®
·ÖÎö С³µÔÚ¹³ÂëµÄ×÷ÓÃÏÂÍ϶¯Ö½´øÔÚˮƽÃæÉÏ×ö¼ÓËÙÔ˶¯£¬Í¨¹ýËٶȴ«¸ÐÆ÷¿ÉËã³öA BÁ½µãµÄËٶȴóС£¬Í¬Ê±ÀûÓÃÀÁ¦´«¸ÐÆ÷²âÁ¿³öÀС³µµÄÁ¦£¬´Ó¶øÓÉAB³¤¶È¿ÉÇó³öºÏÁ¦×öµÄ¹¦ÓëС³µµÄ¶¯Äܱ仯¹Øϵ£®
½â´ð ½â£º£¨1£©±¾ÌâÑо¿ºÏÁ¦×ö¹¦Ó붯Äܱ仯µÄ¹Øϵ£¬ËùÒÔʵÑéǰҪƽºâĦ²ÁÁ¦£»
£¨2£©Óɸ÷×éÊý¾Ý¿É¼û¹æÂÉÓУº¡÷E=$\frac{1}{2}$M£¨v22-v12£©
µÃ£º¡÷E3=0.600 J£¬¹Û²ìF-WÊý¾Ý¹æÂɿɵÃÊýÖµÉÏΪ£ºW3=$\frac{F}{2}$=0.610 J
£¨3£©ÔÚ·½¸ñÖ½ÉÏ×÷³ö¡÷E-WͼÏßÈçͼËùʾ£¬¸ù¾ÝͼÏó¿ÉÖª£¬ÔÚʵÑéÎó²îÔÊÐíµÄ·¶Î§ÄÚ£¬ºÏÍâÁ¦Ëù×öµÄ¹¦µÈÓÚÎïÌ嶯ÄܵÄÔöÁ¿
¹Ê´ð°¸Îª£º£¨1£©Æ½ºâС³µËùÊܵÄĦ²ÁÁ¦£»
£¨2£©0.600 J£¬0.610 J£»
£¨3£©ÈçͼËùʾ£»ÔÚʵÑéÎó²îÔÊÐíµÄ·¶Î§ÄÚ£¬ºÏÍâÁ¦Ëù×öµÄ¹¦µÈÓÚÎïÌ嶯ÄܵÄÔöÁ¿
µãÆÀ ÖµµÃ×¢ÒâµÄÊÇ£º¹³ÂëµÄÖØÁ¦²»µÈÓÚϸÏßµÄÀÁ¦£¬Í¬Ê±Ñ§»á·ÖÎöʵÑéÊý¾Ý´Ó¶øµÃ³ö¹æÂÉ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
9£®ÈçͼËùʾ£¬·¢ÉäÔ¶³Ì¹ìµÀµ¼µ¯£¬µ¯Í·ÍÑÀëÔËÔØ»ð¼ýºó£¬ÔÚµØÇòÒýÁ¦×÷ÓÃÏ£¬ÑØÍÖÔ²¹ìµÀ·ÉÐУ¬»÷ÖеØÃæÄ¿±êB£®CΪÍÖÔ²µÄÔ¶µØµã£¬¾àµØÃæ¸ß¶ÈΪh£®ÒÑÖªµØÇò°ë¾¶ÎªR£¬µØÇòÖÊÁ¿ÎªM£¬ÒýÁ¦³£Á¿ÎªG£®¹ØÓÚµ¯Í·ÔÚCµãµÄËÙ¶ÈvºÍ¼ÓËÙ¶Èa£¬ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£® | v=$\sqrt{\frac{GM}{R+h}}$ a=$\frac{GM}{£¨R+h£©^{2}}$ | B£® | v£¼$\sqrt{\frac{GM}{R+h}}$ a=$\frac{GM}{£¨R+h£©^{2}}$ | ||
C£® | v=$\sqrt{\frac{GM}{R+h}}$ a£¾$\frac{GM}{£¨R+h£©^{2}}$ | D£® | v£¼$\sqrt{\frac{GM}{R+h}}$ a£¼$\frac{GM}{£¨R+h£©^{2}}$ |
7£®ÔÚÏÂÁÐÃèÊöµÄËÙ¶ÈÖУ¬±íʾ˲ʱËٶȵÄÊÇ£¨¡¡¡¡£©
A£® | ×Óµ¯³öÌŵÄËÙ¶È | B£® | ×Óµ¯Í·´òµ½°ÐÃæµÄËÙ¶È | ||
C£® | »ð³µ×êɽ¶´¹ý³ÌÖеÄËÙ¶È | D£® | ÎïÌå´ÓÂ¥¶¥µ½µØÃæ¹ý³ÌÖеÄËÙ¶È |
4£®ÈçͼËùʾ£¬ÖÊÁ¿Îª2mµÄ³¤Ä¾°å£¬¾²Ö¹µØ·ÅÔÚ´Ö²ÚµÄˮƽÃæÉÏ£¬ÁíÒ»ÖÊÁ¿ÎªmµÄСǦ¿é£¨¿ÉÊÓΪÖʵ㣩ÒÔˮƽËÙ¶Èv0»¬ÉÏľ°å×ó¶Ë£¬Ç¡ÄÜ»¬ÖÁľ°åÓÒ¶ËÇÒÓëľ°å±£³ÖÏà¶Ô¾²Ö¹£¬ÔòÏÂÁÐ˵·¨´íÎóµÄÊÇ£¨¡¡¡¡£©
A£® | ÓÉÓÚ¸÷½Ó´¥ÃæµÄĦ²ÁÒòÊýδ֪¿ÉÄܳöÏְ屻Ǧ¿é´ø¶¯µÄÇé¿ö | |
B£® | Ǧ¿éÏà¶ÔÓÚ°åµÄλÒƵÈÓڰ峤 | |
C£® | ÓÉÓÚ¸÷½Ó´¥Ãæ¼äµÄĦ²ÁÒòËØδ֪¿ÉÄܳöÏÖľ°å²»¶¯£¬¶øǦ¿é»¬µ½°åÓҶ˾²Ö¹µÄÇé¿ö | |
D£® | Ò»¶¨ÊÇǦ¿é»¬µ½°åÓÒ¶ËʱÓë°å´ïµ½¹²ËÙºóÒ»ÆðÔÚµØÃæÉÏ»¬ÐÐÔÙ¼õËÙΪ¾²Ö¹ |