题目内容

6.地球的同步卫星距地面高H约为地球半径R的5倍,同步卫星正下方的地面上有一静止的物体A,则同步卫星与物体A的向心加速度之比是多少?若给物体A以适当的绕行速度,使A成为近地卫星,则同步卫星与近地卫星的向心加速度之比是多少?

分析 (1)同步卫星与物体A周期相等,根据圆周运动公式求解.
(2)对于卫星A和同步卫星均绕地球做匀速圆周运动,根据万有引力提供向心力得出加速度关系

解答 解:地面上物体A与同步卫星有相同的角速度,由${a_n}={ω^2}r$得:$\frac{a_n}{a_A}=\frac{r_n}{r_A}=6$:1
又:由$G\frac{Mm}{r^2}=m{a_n}$得:${a_n}=G\frac{M}{r^2}$所以:$\frac{a_n}{a_n^'}=\frac{{r_n^{'2}}}{r_n^2}=\frac{1}{36}$.
答:同步卫星与物体A的向心加速度之比是6:1,若给物体A以适当的绕行速度,使A成为近地卫星,则同步卫星与近地卫星的向心加速度之比,1:36

点评 解决本题的关键掌握同步卫星的特点,以及掌握万有引力提供向心力这一理论,并能熟练运用

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网