题目内容

“嫦娥一号”在距离月球表面高为h处绕月球作匀速圆周运动,已知月球半径为R,月球表面的重力加速度为g,求:“嫦娥一号”环绕月球运行的周期为多少?
【答案】分析:根据绕月卫星的万有引力等于向心力和月球表面重力等于万有引力,联立列式求解出周期;
解答:解:(1)绕月卫星绕月球做匀速圆周运动,根据万有引力提供向心力,设卫星的质量为m、轨道半径为r、月球质量为M,有
G
地球表面重力加速度公式

联立①②得到
T=2π
答:“嫦娥一号”环绕月球运行的周期为T=2π
点评:本题关键根据绕月卫星受到的万有引力等于向心力,以及近月卫星和近地卫星受到的重力等于向心力列式计算.
练习册系列答案
相关题目
如图所示为我国“嫦娥一号卫星”从发射到进入月球工作轨道的过程示意图.在发射过程中,经过一系列的加速和变轨,卫星沿绕地球“48小时轨道”在抵达近地点P时,主发动机启动,“嫦娥一号卫星”的速度在很短时间内由v1提高到v2,进入“地月转移轨道”,开始了从地球向月球的飞越.“嫦娥一号卫星”在“地月转移轨道”上经过114小时飞行到达近月点Q时,需要及时制动,使其成为月球卫星.之后,又在绕月球轨道上的近月点Q经过两次制动,最终进入绕月球的圆形工作轨道I.已知“嫦娥一号卫星”质量为m0,在绕月球的圆形工作轨道I上运动的周期为T,月球的半径r,月球的质量为m,万有引力恒量为G.
(1)求卫星从“48小时轨道”的近地点P进入“地月转移轨道”过程中主发动机对“嫦娥一号卫星”做的功(不计地球引力做功和卫星质量变化);
(2)求“嫦娥一号卫星”在绕月球圆形工作轨道?运动时距月球表面的高度;
(3)理论证明,质量为m的物体由距月球无限远处无初速释放,它在月球引力的作用下运动至距月球中心为r处的过程中,月球引力对物体所做的功可表示为W=Gmm/r.为使“嫦娥一号卫星”在近月点Q进行第一次制动后能成为月球的卫星,且与月球表面的距离不小于圆形工作轨道?的高度,最终进入圆形工作轨道,其第一次制动后的速度大小应满足什么条件?
精英家教网

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网