题目内容

【题目】如图所示,倾角为α的光滑斜面与半径为R=0.4 m半圆形光滑轨道在同一竖直平面内,其中斜面与水平面BE光滑连接,水平面BE长为L=0.4 m,直径CD沿竖直方向,C、E可看做重合。现有一可视为质点的小球从斜面上距B点竖直距离为H的地方由静止释放,小球在水平面上所受阻力为其重力的。(g=10 m/s2)求:

(1)若要使小球经E处水平进入圆形轨道且能沿轨道运动,H至少要有多高?

(2)如小球恰能沿轨道运动,那么小球在水平面DF上能滑行多远?

【答案】(1) (2)5m

【解析】

(1)小球从光滑斜面轨道下滑,机械能守恒,设到达B点时的速度大小为v,则

mgH=mv2

因为小球在水平面所受阻力为其重力的

根据牛顿第二定律a==2 m/s2

vE2-v2=-2aL

小球能在竖直平面内做圆周运动,在圆形轨道最高点必须满足:

mg≤m

联立以上几式并代入数据得:H≥0.28 m

小球恰能沿轨道运动,则在E点应该有

根据动能定理:

mg·2R-kmg·x=0-mvE2

代入数据可解得:x=5 m。

故本题答案是:(1) (2)5m

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网