ÌâÄ¿ÄÚÈÝ
£¨2007?ÉϺ££©Èçͼ£¨a£©Ëùʾ£¬¹â»¬µÄƽÐг¤Ö±½ðÊôµ¼¹ìÖÃÓÚˮƽÃæÄÚ£¬¼ä¾àΪL¡¢µ¼¹ì×ó¶Ë½ÓÓÐ×èֵΪRµÄµç×裬ÖÊÁ¿ÎªmµÄµ¼Ìå°ô´¹Ö±¿ç½ÓÔÚµ¼¹ìÉÏ£®µ¼¹ìºÍµ¼Ìå°ôµÄµç×è¾ù²»¼Æ£¬ÇÒ½Ó´¥Á¼ºÃ£®ÔÚµ¼¹ìƽÃæÉÏÓÐÒ»¾ØÐÎÇøÓòÄÚ´æÔÚ×ÅÊúÖ±ÏòϵÄÔÈÇ¿´Å³¡£¬´Å¸ÐӦǿ¶È´óСΪB£®¿ªÊ¼Ê±£¬µ¼Ìå°ô¾²Ö¹Óڴų¡ÇøÓòµÄÓҶˣ¬µ±´Å³¡ÒÔËÙ¶Èv1ÔÈËÙÏòÓÒÒƶ¯Ê±£¬µ¼Ìå°ôËæÖ®¿ªÊ¼Ô˶¯£¬Í¬Ê±Êܵ½Ë®Æ½Ïò×ó¡¢´óСΪfµÄºã¶¨×èÁ¦£¬²¢ºÜ¿ì´ïµ½ºã¶¨Ëٶȣ¬´Ëʱµ¼Ìå°ôÈÔ´¦Óڴų¡ÇøÓòÄÚ£®
£¨1£©Çóµ¼Ìå°ôËù´ïµ½µÄºã¶¨ËÙ¶Èv2£»
£¨2£©ÎªÊ¹µ¼Ìå°ôÄÜËæ´Å³¡Ô˶¯£¬×èÁ¦×î´ó²»Äܳ¬¹ý¶àÉÙ£¿
£¨3£©µ¼Ìå°ôÒԺ㶨ËÙ¶ÈÔ˶¯Ê±£¬µ¥Î»Ê±¼äÄÚ¿Ë·þ×èÁ¦Ëù×öµÄ¹¦ºÍµç·ÖÐÏûºÄµÄµç¹¦Âʸ÷Ϊ¶à´ó£¿
£¨4£©Èôt=0ʱ´Å³¡Óɾ²Ö¹¿ªÊ¼Ë®Æ½ÏòÓÒ×öÔȼÓËÙÖ±ÏßÔ˶¯£¬¾¹ý½Ï¶Ìʱ¼äºó£¬µ¼Ìå°ôÒ²×öÔȼÓËÙÖ±ÏßÔ˶¯£¬Æäv-t¹ØϵÈçͼ£¨b£©Ëùʾ£¬ÒÑÖªÔÚʱ¿Ìtµ¼Ìå°ô˲ʱËٶȴóСΪvt£¬Çóµ¼Ìå°ô×öÔȼÓËÙÖ±ÏßÔ˶¯Ê±µÄ¼ÓËٶȴóС£®
£¨1£©Çóµ¼Ìå°ôËù´ïµ½µÄºã¶¨ËÙ¶Èv2£»
£¨2£©ÎªÊ¹µ¼Ìå°ôÄÜËæ´Å³¡Ô˶¯£¬×èÁ¦×î´ó²»Äܳ¬¹ý¶àÉÙ£¿
£¨3£©µ¼Ìå°ôÒԺ㶨ËÙ¶ÈÔ˶¯Ê±£¬µ¥Î»Ê±¼äÄÚ¿Ë·þ×èÁ¦Ëù×öµÄ¹¦ºÍµç·ÖÐÏûºÄµÄµç¹¦Âʸ÷Ϊ¶à´ó£¿
£¨4£©Èôt=0ʱ´Å³¡Óɾ²Ö¹¿ªÊ¼Ë®Æ½ÏòÓÒ×öÔȼÓËÙÖ±ÏßÔ˶¯£¬¾¹ý½Ï¶Ìʱ¼äºó£¬µ¼Ìå°ôÒ²×öÔȼÓËÙÖ±ÏßÔ˶¯£¬Æäv-t¹ØϵÈçͼ£¨b£©Ëùʾ£¬ÒÑÖªÔÚʱ¿Ìtµ¼Ìå°ô˲ʱËٶȴóСΪvt£¬Çóµ¼Ìå°ô×öÔȼÓËÙÖ±ÏßÔ˶¯Ê±µÄ¼ÓËٶȴóС£®
·ÖÎö£ºµ¼Ìå°ôÊÜÁ¦Æ½ºâ£¬¿ÉÇóËù´ïµ½µÄºã¶¨ËÙ¶Èv2£¬ÎªÊ¹µ¼Ìå°ôÄÜËæ´Å³¡Ô˶¯£¬×èÁ¦×î´ó²»Äܳ¬¹ýËùÊܵÄ×î´ó°²ÅàÁ¦£¬¼´µ¼Ìå°ô²»¶¯Ê±£¬°²ÅàÁ¦×î´ó£¬ÓÉÊÜÁ¦Æ½ºâ¿ÉÇ󣻸ù¾ÝÄÜÁ¿Êغ㡢¹¦ÂʹØϵÇó½â£»¶Ôµ¼Ìå°ôÊÜÁ¦·ÖÎöÓÉÅ£¶ÙµÚ¶þ¶¨ÂÉ£¬ÇÒ¼ÓËÙ¶ÈΪбÂÊ£®
½â´ð£º½â£º£¨1£©Óеç´Å¸ÐÓ¦¶¨ÂÉ£¬µÃ
E=BL£¨v1-v2£©
±ÕºÏµç·ŷķ¶¨ÂÉ
I=
µ¼Ìå°ôËùÊÜ°²ÅàÁ¦
F=BIL=
ËٶȺ㶨ʱÓÐ
=f
¿ÉµÃv2=v1-
£¨2£©ÎªÊ¹µ¼Ìå°ôÄÜËæ´Å³¡Ô˶¯£¬×èÁ¦×î´ó²»Äܳ¬¹ýËùÊܵÄ×î´ó°²ÅàÁ¦£¬¼´µ¼Ìå°ô²»¶¯Ê±£¬°²ÅàÁ¦×î´óΪ
fm=
£¨3£©¸ù¾ÝÄÜÁ¿Êغ㣬µ¥Î»Ê±¼äÄÚ¿Ë·þ×èÁ¦Ëù×öµÄ¹¦£¬¼´Ä¦²ÁÁ¦µÄ¹¦ÂÊ
P=FV=f(v1-
)
µç·ÖÐÏûºÄµÄµç¹¦ P=
=
=
£¨4£©Òò
-f=maµ¼Ìå°ôÒª×öÔȼÓËÙÔ˶¯£¬±ØÓÐv1-v2Ϊ³£Êý£¬ÉèΪ¡÷v£¬Ôò£º
a=
Ôò
-f=ma
¿É½âµÃ
a=
´ð£º£¨1£©Çóµ¼Ìå°ôËù´ïµ½µÄºã¶¨ËÙ¶Èv2=v1-
£»
£¨2£©ÎªÊ¹µ¼Ìå°ôÄÜËæ´Å³¡Ô˶¯£¬×èÁ¦×î´ó²»Äܳ¬¹ý
£¨3£©µ¼Ìå°ôÒԺ㶨ËÙ¶ÈÔ˶¯Ê±£¬µ¥Î»Ê±¼äÄÚ¿Ë·þ×èÁ¦Ëù×öµÄ¹¦ºÍµç·ÖÐÏûºÄµÄµç¹¦Âʸ÷Ϊf(v1-
)£¬
£¨4£©µ¼Ìå°ô×öÔȼÓËÙÖ±ÏßÔ˶¯Ê±µÄ¼ÓËٶȴóСΪa=
£®
E=BL£¨v1-v2£©
±ÕºÏµç·ŷķ¶¨ÂÉ
I=
E |
R |
µ¼Ìå°ôËùÊÜ°²ÅàÁ¦
F=BIL=
B2L2(v1-v2) |
R |
ËٶȺ㶨ʱÓÐ
B2L2(v1-v2) |
R |
¿ÉµÃv2=v1-
fR |
B2L2 |
£¨2£©ÎªÊ¹µ¼Ìå°ôÄÜËæ´Å³¡Ô˶¯£¬×èÁ¦×î´ó²»Äܳ¬¹ýËùÊܵÄ×î´ó°²ÅàÁ¦£¬¼´µ¼Ìå°ô²»¶¯Ê±£¬°²ÅàÁ¦×î´óΪ
fm=
B2L2v1 |
R |
£¨3£©¸ù¾ÝÄÜÁ¿Êغ㣬µ¥Î»Ê±¼äÄÚ¿Ë·þ×èÁ¦Ëù×öµÄ¹¦£¬¼´Ä¦²ÁÁ¦µÄ¹¦ÂÊ
P=FV=f(v1-
fR |
B2L2 |
µç·ÖÐÏûºÄµÄµç¹¦ P=
E2 |
R |
B2L2(v1-v2)2 |
R |
f2R |
B2L2 |
£¨4£©Òò
B2L2(v1-v2) |
R |
a=
vt+¡÷v |
t |
Ôò
B2L2(at-vt) |
R |
¿É½âµÃ
a=
B2L2vt+fR |
B2L2t-mR |
´ð£º£¨1£©Çóµ¼Ìå°ôËù´ïµ½µÄºã¶¨ËÙ¶Èv2=v1-
fR |
B2L2 |
£¨2£©ÎªÊ¹µ¼Ìå°ôÄÜËæ´Å³¡Ô˶¯£¬×èÁ¦×î´ó²»Äܳ¬¹ý
B2L2v1 |
R |
£¨3£©µ¼Ìå°ôÒԺ㶨ËÙ¶ÈÔ˶¯Ê±£¬µ¥Î»Ê±¼äÄÚ¿Ë·þ×èÁ¦Ëù×öµÄ¹¦ºÍµç·ÖÐÏûºÄµÄµç¹¦Âʸ÷Ϊf(v1-
fR |
B2L2 |
f2R |
B2L2 |
£¨4£©µ¼Ìå°ô×öÔȼÓËÙÖ±ÏßÔ˶¯Ê±µÄ¼ÓËٶȴóСΪa=
B2L2vt+fR |
B2L2t-mR |
µãÆÀ£º¿¼²éÁ˵ç´Å¸ÐÓ¦¶¨ÂÉ£¬±ÕºÏµç·¡¢Å£¶ÙÔ˶¯¶¨ÂÉ¡¢Ïà¶ÔÔ˶¯£¬×¢ÒâÏà¶ÔÔ˶¯Ê±£¬ÈçºÎÇó³ö¹¦Âʼ°ÄÜÁ¿£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿