ÌâÄ¿ÄÚÈÝ
£¨1£©Ô˶¯Ô±´ÓÕϰÎïÉ϶˵ãDÔ½¹ýʱËÙ¶ÈvDµÄ´óС£»
£¨2£©AµãÀëµØÃæµÄ¸ß¶Èh3µÄ´óС£®
·ÖÎö£º£¨1£©Ô˶¯Ô±À뿪Bµãºó×öƽÅ×Ô˶¯£¬¸ù¾ÝƽÅ×Ô˶¯µÄ¹æÂÉÇó³öBµãµÄËÙ¶ÈÒÔ¼°ÔÚDµãÊúÖ±·½ÏòÉϵķÖËÙ¶È£¬½áºÏƽÐÐËıßÐζ¨ÔòÇó³öÔ½¹ýDµãʱµÄËÙ¶È´óС£®
£¨2£©Í¨¹ýAµãµÄ»úеÄܵóöBµãµÄ»úеÄÜ£¬½áºÏBµãµÄ¶¯ÄÜ£¬Çó³öAµã¾àÀëµØÃæµÄ¸ß¶È£®
£¨2£©Í¨¹ýAµãµÄ»úеÄܵóöBµãµÄ»úеÄÜ£¬½áºÏBµãµÄ¶¯ÄÜ£¬Çó³öAµã¾àÀëµØÃæµÄ¸ß¶È£®
½â´ð£º½â£º£¨1£©ÉèÔ˶¯Ô±·É³öBµãʱµÄËÙ¶ÈΪvB£¬Ô½¹ýDµãÊ±ÑØÊúÖ±·½ÏòµÄ·ÖËÙ¶ÈΪvDy£¬ÉèÔ˶¯Ô±´ÓBµãµ½Dµã×öƽÅ×Ô˶¯µÄʱ¼äΪt
ˮƽ·½Ïò s=vBt
ÊúÖ±·½Ïò h1-h2=
gt2
ÓÖ vDy=gt
½âµÃ vB=s
vDy=
Ô˶¯Ô±Ô½¹ýDµãʱËٶȵĴóС
vD=
=
£®
£¨2£©Ô˶¯Ô±ÓÉAµãÔ˶¯µ½BµãµÄ¹ý³ÌÖУ¬
¼õÉÙµÄÖØÁ¦ÊÆÄÜ¡÷Ep=mg£¨h3-h1£©
ËðʧµÄ»úеÄÜ¡÷E=kmgh3
Óɹ¦ÄܹØÏµµÃ¡÷Ep-¡÷E=
mvB2
½âµÃ h3=
+
£®
´ð£º£¨1£©Ô˶¯Ô±´ÓÕϰÎïÉ϶˵ãDÔ½¹ýʱËÙ¶ÈvDµÄ´óСvD=
£»
£¨2£©AµãÀëµØÃæµÄ¸ß¶Èh3µÄ´óСh3=
+
£®
ˮƽ·½Ïò s=vBt
ÊúÖ±·½Ïò h1-h2=
| 1 |
| 2 |
ÓÖ vDy=gt
½âµÃ vB=s
|
vDy=
| 2g(h1-h2) |
Ô˶¯Ô±Ô½¹ýDµãʱËٶȵĴóС
vD=
| vB2+vDy2 |
|
£¨2£©Ô˶¯Ô±ÓÉAµãÔ˶¯µ½BµãµÄ¹ý³ÌÖУ¬
¼õÉÙµÄÖØÁ¦ÊÆÄÜ¡÷Ep=mg£¨h3-h1£©
ËðʧµÄ»úеÄÜ¡÷E=kmgh3
Óɹ¦ÄܹØÏµµÃ¡÷Ep-¡÷E=
| 1 |
| 2 |
½âµÃ h3=
| h1 |
| 1-k |
| s2 |
| 4(h1-h2)(1-k) |
´ð£º£¨1£©Ô˶¯Ô±´ÓÕϰÎïÉ϶˵ãDÔ½¹ýʱËÙ¶ÈvDµÄ´óСvD=
|
£¨2£©AµãÀëµØÃæµÄ¸ß¶Èh3µÄ´óСh3=
| h1 |
| 1-k |
| s2 |
| 4(h1-h2)(1-k) |
µãÆÀ£º±¾Ìâ×ۺϿ¼²éÁËÆ½Å×Ô˶¯µÄ¹æÂÉ£¬ÒÔ¼°¹¦ÄܹØÏµµÈ¹æÂÉ£¬ÖªµÀ¼õСµÄÖØÁ¦ÊÆÄܵÈÓÚËðʧµÄ»úеÄܺͶ¯ÄܵÄÔö¼ÓÁ¿Ö®ºÍ£®ÄѶÈÖеȣ®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿