题目内容
宽9 m的成形玻璃以2 m/s的速度连续不断地向前行进,在切割工序处,金刚割刀的速度为10 m/s,为了使割下的玻璃板都成规定尺寸的矩形,则:
(1)金刚割刀的轨道应如何控制?
(2)切割一次的时间多长?
(1)金刚割刀的轨道应如何控制?
(2)切割一次的时间多长?
(1)割刀速度方向与玻璃板运动速度方向成arccos角 (2)0.92 s
(1)由题目条件知,割刀运动的速度是实际的速度,所以为合速度.
其分速度的效果是恰好相对玻璃垂直切割.
设割刀的速度v2的方向与玻璃板运动速度v1的方向之间的夹角为θ,如
图所示.要保证割下均是矩形的玻璃板,则由v2是合速度得v1=v2cosθ
所以cosθ==,
即θ=arccos
所以,要割下矩形玻璃板,割刀速度方向与玻璃板运动速度方向成θ=arccos角.
(2)切割一次的时间t== s≈0.92 s
其分速度的效果是恰好相对玻璃垂直切割.
设割刀的速度v2的方向与玻璃板运动速度v1的方向之间的夹角为θ,如
图所示.要保证割下均是矩形的玻璃板,则由v2是合速度得v1=v2cosθ
所以cosθ==,
即θ=arccos
所以,要割下矩形玻璃板,割刀速度方向与玻璃板运动速度方向成θ=arccos角.
(2)切割一次的时间t== s≈0.92 s
练习册系列答案
相关题目