ÌâÄ¿ÄÚÈÝ
ÈçͼËùʾΪÁ½×鯽Ðаå½ðÊô°å£¬Ò»×éÊúÖ±·ÅÖã¬Ò»×éˮƽ·ÅÖ㬽ñÓÐÒ»ÖÊÁ¿ÎªmµÄµçÁ¿ÎªeµÄµç×Ó¾²Ö¹ÔÚÊúÖ±·ÅÖÃµÄÆ½ÐнðÊô°åµÄAµã£¬¾µçѹU0¼ÓËÙºóͨ¹ýBµã½øÈëÁ½°å¼ä¾àΪd¡¢µçѹΪUµÄˮƽ·ÅÖÃµÄÆ½ÐнðÊô°å¼ä£¬Èôµç×Ó´ÓÁ½¿éˮƽƽÐаåµÄÕýÖмäÉäÈ룬ÇÒ×îºóµç×Ó¸ÕºÃÄÜ´ÓÓÒ²àµÄÁ½¿éƽÐнðÊô°å´©³ö£¬A¡¢B·Ö±ðΪÁ½¿éÊúÖ±°åµÄÖе㣬Çó£º
1.µç×Óͨ¹ýBµãʱµÄËÙ¶È´óС
2.ÓÒ²àÆ½ÐнðÊô°åµÄ³¤¶È
3.µç×Ó´©³öÓÒ²àÆ½ÐнðÊô°åʱµÄ¶¯ÄܺÍËÙ¶È·½Ïò
1.
2.
3.
½âÎö:£¨1£©Óɶ¯Äܶ¨Àí e U0=mv02/2µÃv0= (3·Ö)
£¨2£©µç×Ó½øÈëÆ«×ªµç³¡×öÀàÆ½Å×Ô˶¯¡£Éè°å³¤ÎªL
L=v0 t (1·Ö)
y=d/2=at2/2 (2·Ö)
a=F/m= eU/md (2·Ö)
ÁªÁ¢ÒÔÉϵÃL= (2·Ö)
£¨3£©È«¹ý³ÌÓɶ¯Äܶ¨Àí eU0+ eU= EK -0 µÃEK = eU0+
eU (2·Ö)
ËÙ¶È·½ÏòÓëˮƽ·½Ïò¼Ð½Ç¦ÕÂú×ã tan¦Õ=at/ v0=
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿