ÌâÄ¿ÄÚÈÝ
10£®Ä³×ãÇò³¡³¤90m¡¢¿í60m£®¹¥·½Ç°·æÔÚÖÐÏß´¦½«×ãÇòÑرßÏßÏòÇ°Ìß³ö£¬×ãÇòµÄÔ˶¯¿ÉÊÓΪÔÚµØÃæÉÏ×ö³õËÙ¶ÈΪ12m/sµÄÔȼõËÙÖ±ÏßÔ˶¯£¬¼ÓËٶȴóСΪ2m/s2£®£¨1£©Çó×ãÇò´Ó¿ªÊ¼×öÔȼõËÙÔ˶¯µ½Í£ÏÂÀ´µÄλÒÆΪ¶à´ó
£¨2£©×ãÇò¿ªÊ¼×öÔȼõËÙÖ±ÏßÔ˶¯µÄͬʱ£¬¸ÃÇ°·æ¶ÓÔ±ÑرßÏßÏòÇ°×·¸Ï×ãÇò£®Ç°·æ¶ÓÔ±µÄÆô¶¯¹ý³Ì¿ÉÊÓΪ³õËÙ¶ÈΪ0£¬¼ÓËÙ¶ÈΪ2m/s2µÄÔȼÓËÙÖ±ÏßÔ˶¯£¬ËùÄÜ´ïµ½µÄ×î´óËÙ¶ÈΪ8m/s£®´ïµ½×î´óËٶȺóÄÜÒÔ×î´óËÙ¶ÈÔÈËÙÔ˶¯£¬ÊÔÅжϸÃÇ°·æ¶ÓÔ±ÔÚ×ãÇòÍ£Ö¹Ô˶¯Ê±£¬ÊÇ·ñ×·ÉÏ×ãÇò£¿¸ÃÇ°·æ¶ÓÔ±ÖÁÉÙ¾¹ý¶à³¤Ê±¼äÄÜ×·ÉÏ×ãÇò£®
·ÖÎö £¨1£©¸ù¾ÝËÙ¶Èʱ¼ä¹«Ê½Çó³ö×ãÇòËٶȼõΪÁãµÄʱ¼ä£¬½áºÏƽ¾ùËÙ¶ÈÍÆÂÛÇó³öÍ£ÏÂÀ´µÄλÒÆ£®
£¨2£©¸ù¾ÝËÙ¶Èʱ¼ä¹«Ê½Çó³öÇ°·æ¶ÓÔ±Ëٶȴﵽ×î´óʱËùÐèµÄʱ¼ä£¬Çó³öÔȼÓËÙÖ±ÏßÔ˶¯µÄλÒÆ£¬×¥×¡¶ÓÔ±µÄÔ˶¯Ê±¼äºÍ×ãÇòÔ˶¯µÄʱ¼äÏàµÈÇó³ö×ãÇòµ½Í£Ö¹¹ý³ÌÖжÓÔ±µÄλÒÆ£¬Í¨¹ýλÒƹØϵÅжÏÇ°·æ¶ÓÔ±ÊÇ·ñ×·ÉÏ×ãÇò£¬Èôδ׷ÉÏ£¬Ç°·æ¶ÓÔ±¼ÌÐøÔÈËÙ×·¸Ï£¬½áºÏλÒƹ«Ê½Çó³ö¼ÌÐøÔÈËÙÔ˶¯µÄʱ¼ä£¬´Ó¶øµÃ³ö×·¼°µÄ×Üʱ¼ä£®
½â´ð ½â£¨1£©ÒÑÖª×ãÇòµÄ³õËÙ¶ÈΪv1=12m/s£¬¼ÓËٶȴóСΪa1=2m/s2
×ãÇò×öÔȼõËÙÔ˶¯µÄʱ¼äΪ£ºt1=$\frac{{v}_{1}}{{a}_{1}}$=$\frac{12}{2}s$=6s
λÒÆΪ£ºx1=$\frac{{v}_{1}}{2}{t}_{1}=\frac{12}{2}¡Á6m$=36m
£¨2£©ÒÑ֪ǰ·æ¶ÓÔ±µÄ¼ÓËÙ¶ÈΪa2=2m/s2£¬×î´óËÙ¶ÈΪv2=8m/s£¬Ç°·æ¶ÓÔ±×öÔȼÓËÙÔ˶¯´ïµ½×î´óËٶȵÄʱ¼äºÍλÒÆ·Ö±ðΪ£º
t2=$\frac{{v}_{2}}{{a}_{2}}=\frac{8}{2}s$=4s
x2=$\frac{{v}_{2}}{2}{t}_{2}=\frac{8}{2}¡Á4m$=16m
Ö®ºóÇ°·æ¶ÓÔ±×öÔÈËÙÖ±ÏßÔ˶¯£¬µ½×ãÇòÍ£Ö¹Ô˶¯Ê±£¬ÆäλÒÆΪ£ºx3=v2£¨t1-t2£©=16m
ÓÉÓÚx2+x3£¼x1£¬¹Ê×ãÇòÍ£Ö¹Ô˶¯Ê±£¬Ç°·æ¶ÓԱûÓÐ×·ÉÏ×ãÇò£®
È»ºóÇ°·æ¶ÓÔ±¼ÌÐøÒÔ×î´óËÙ¶ÈÔÈËÙÔ˶¯×·¸Ï×ãÇò£¬
ÀûÓù«Ê½x1-£¨x2+x3£©=v2t3£¬
´úÈëÊý¾Ý½âµÃ£ºt3=0.5s
Ç°·æ¶ÓÔ±×·ÉÏ×ãÇòµÄʱ¼ät=t1+t3=6.5s£®
´ð£º£¨1£©×ãÇò´Ó¿ªÊ¼×öÔȼõËÙÔ˶¯µ½Í£ÏÂÀ´µÄλÒÆΪ36m£»
£¨2£©×ãÇòÍ£Ö¹Ô˶¯Ê±£¬Ç°·æ¶ÓԱûÓÐ×·ÉÏ×ãÇò£®Ç°·æ¶ÓÔ±×·ÉÏ×ãÇòµÄʱ¼äÖÁÉÙΪ6.5s£®
µãÆÀ ±¾Ì⿼²éÔ˶¯Ñ§ÖеÄ×·¼°ÎÊÌ⣬¹Ø¼üÀíÇåÎïÌåµÄÔ˶¯¹æÂÉ£¬½áºÏÔ˶¯Ñ§¹«Ê½Áé»îÇó½â£¬ÓÐʱÔËÓÃÍÆÂÛÇó½â»áʹÎÊÌâ¸ü¼Ó¼ò½Ý£®
A£® | 2015Äê9ÔÂ3ÈÕ10£º00£º00ÊÇʱ¼ä¼ä¸ô | |
B£® | Õû¸ö·ÖÁÐʽÁ÷³ÌÀúʱ50·ÖÖÓÊÇָʱ¿Ì | |
C£® | Ñо¿Í½²½·½¶ÓÐнøʱ£¬¿ÉÒÔ½«¸÷¸ö·½¶Ó¿´³ÉÖʵã | |
D£® | ÔÚ¶ÓÎéÐнøʱ£¬¸÷¸öͽ²½·½¶ÓµÄƽ¾ùËٶȲ»Ïàͬ |
A£® | Ïò¶« | B£® | ÏòÄÏ | C£® | ÏòÎ÷ | D£® | Ïò±± |
A£® | $\frac{2¡÷x£¨{t}_{1}-{t}_{2}£©}{{t}_{1}{t}_{2}£¨{t}_{1}+{t}_{2}£©}$ | B£® | $\frac{¡÷x£¨{t}_{1}-{t}_{2}£©}{{t}_{1}{t}_{2}£¨{t}_{1}+{t}_{2}£©}$ | ||
C£® | $\frac{2¡÷x£¨{t}_{1}+{t}_{2}£©}{{t}_{1}{t}_{2}£¨{t}_{1}-{t}_{2}£©}$ | D£® | $\frac{¡÷x£¨{t}_{1}+{t}_{2}£©}{{t}_{1}{t}_{2}£¨{t}_{1}-{t}_{2}£©}$ |
A£® | ÎïÌåAÊܵ½ÖØÁ¦¡¢Ö§³ÖÁ¦¡¢»¬¶¯Ä¦²ÁÁ¦ | |
B£® | ÎïÌåAÊܵ½ÖØÁ¦¡¢Ö§³ÖÁ¦¡¢ÑØбÃæÏòÉϵÄÀÁ¦¡¢»¬¶¯Ä¦²ÁÁ¦ | |
C£® | ÎïÌåAËùÊܵÄĦ²ÁÁ¦·½ÏòÑØбÃæÏòÏ | |
D£® | ÎïÌåA¶ÔбÃæµÄѹÁ¦¾ÍÊÇÆäÖØÁ¦ÔÚ´¹Ö±ÓÚбÃæ·½ÏòµÄ·ÖÁ¦ |