【题目】为了普及环保知识,增强环保意识,某大学从理工类专业的班和文史类专业的
班各抽取
名同学参加环保知识测试,统计得到成绩与专业的列联表:( )
优秀 | 非优秀 | 总计 | |
| 14 | 6 | 20 |
| 7 | 13 | 20 |
总计 | 21 | 19 | 40 |
附:参考公式及数据:
(1)统计量:,(
).
(2)独立性检验的临界值表:
0.050 | 0.010 | |
3.841 | 6.635 |
则下列说法正确的是
A. 有的把握认为环保知识测试成绩与专业有关
B. 有的把握认为环保知识测试成绩与专业无关
C. 有的把握认为环保知识测试成绩与专业有关
D. 有的把握认为环保知识测试成绩与专业无关
【题目】在新高考改革中,打破了文理分科的“”模式,不少省份采用了“
”,“
”,“
”等模式.其中“
”模式的操作又更受欢迎,即语数外三门为必考科目,然后在物理和历史中选考一门,最后从剩余的四门中选考两门.某校为了了解学生的选科情况,从高二年级的2000名学生(其中男生1100人,女生900人)中,采用分层抽样的方法从中抽取n名学生进行调查.
(1)已知抽取的n名学生中含男生110人,求n的值及抽取到的女生人数;
(2)在(1)的情况下对抽取到的n名同学“选物理”和“选历史”进行问卷调查,得到下列2×2列联表.请将列联表补充完整,并判断是否有99%的把握认为选科目与性别有关?
选物理 | 选历史 | 合计 | |
男生 | 90 | ||
女生 | 30 | ||
合计 |
(3)在(2)的条件下,从抽取的“选历史”的学生中按性别分层抽样再抽取5名,再从这5名学生中抽取2人了解选政治、地理、化学、生物的情况,求2人至少有1名男生的概率.
参考公式:.
0.10 | 0.010 | 0.001 | |
2.706 | 6.635 | 10.828 |