15.某数学老师身高179cm,他爷爷、父亲和儿子的身高分别是176cm、173cm和185cm,因儿子的身高与父亲的身高有关,该老师用线性回归分析的方法预测孙子的身高,已知父亲与儿子身高如表一:
 父亲身高x(cm) 176 173 179
 儿子身高y(cm) 173 179 185
该数学老师提供了三种求回归直线$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$的方案(每种方案都正确).$\stackrel{∧}{b}$=$\frac{\sum_{\;}^{\;}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{\;}^{\;}{x}_{i}^{2}-{n\overline{x}}^{2}}$(公式1),$\stackrel{∧}{b}$=$\frac{\sum_{\;}^{\;}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{\;}^{\;}(x{{\;}_{i}-\overline{x}}^{2})}$(公式2);$\stackrel{∧}{a}$=$\overline{y}$-b$\overline{x}$(公式3)
(方案一):借助(公式1)求$\stackrel{∧}{b}$,借助(公式3),求$\stackrel{∧}{a}$,进而求回归直线方程;
(方案二):借助(公式2)求$\stackrel{∧}{b}$,借助(公式3)求$\stackrel{∧}{a}$,进而求回归直线方程;
(方案三):令X=x-173,Y=y-179,则(表一)转化成诶面的(表二).
 X 3 6
 Y-6 0 6
借助(表二)和(公式1)、(公式3),求出$\stackrel{∧}{Y}$=$\stackrel{∧}{b}$X+$\stackrel{∧}{a}$,进而求出y对x的回归直线(y-179)=$\stackrel{∧}{b}$(x-173)+$\stackrel{∧}{a}$.
结合数据特点任选一种方案,求y与x的回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$,并根据回归直线预测数学教师的孙子的身高.
 0  252685  252693  252699  252703  252709  252711  252715  252721  252723  252729  252735  252739  252741  252745  252751  252753  252759  252763  252765  252769  252771  252775  252777  252779  252780  252781  252783  252784  252785  252787  252789  252793  252795  252799  252801  252805  252811  252813  252819  252823  252825  252829  252835  252841  252843  252849  252853  252855  252861  252865  252871  252879  266669 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网