15.某电子广告牌连续播出四个广告,假设每个广告所需的时间互相独立,且都是整数分钟,经统计,以往播出100次所需的时间(t)的情况如下:
每次随机播出,若将频率视为概率.
(Ⅰ)求恰好在第6分钟后开始播出第3号广告的概率;
(Ⅱ)用X表示至第4分钟末已完整播出广告的次数,求x的分布列及数学期望.
类别 | 1号广告 | 2号广告 | 3号广告 | 4号广告 |
广告次数 | 20 | 30 | 40 | 10 |
时间t(分钟/人) | 2 | 3 | 4 | 6 |
(Ⅰ)求恰好在第6分钟后开始播出第3号广告的概率;
(Ⅱ)用X表示至第4分钟末已完整播出广告的次数,求x的分布列及数学期望.
12.设集合A={$\frac{n}{2}$|n∈Z},B={n|n∈Z},C={n+$\frac{1}{2}$|n∈Z},D={$\frac{n}{3}$+$\frac{1}{6}$|n∈Z},则在下列关系式中,成立的是( )
A. | A$\underset{?}{≠}$B$\underset{?}{≠}$C$\underset{?}{≠}$D | B. | A∩B=∅,C∩D=∅ | C. | A=B∪C,C$\underset{?}{≠}$D | D. | A∪B=B ,C∩D=∅ |
11.设函数y=$\frac{x+3}{x-4}$和y=$\frac{(x-3)(x+3)}{{x}^{2}-7x+12}$的值域分别为A和B,则( )
0 251239 251247 251253 251257 251263 251265 251269 251275 251277 251283 251289 251293 251295 251299 251305 251307 251313 251317 251319 251323 251325 251329 251331 251333 251334 251335 251337 251338 251339 251341 251343 251347 251349 251353 251355 251359 251365 251367 251373 251377 251379 251383 251389 251395 251397 251403 251407 251409 251415 251419 251425 251433 266669
A. | A=B | B. | A?B | C. | A?B | D. | A∪B=R |