题目内容

设f(x)=
x
a(x+2)
,且f(x)=x有唯一解,f(x1)=
1
1003
,xn+1=f(xn)(n∈N*).
(1)求实数a;
(2)求数列{xn}的通项公式;
(3)若an=
4
xn
-4009,bn=
an+12+an2
2an+1an
(n∈N*),求证:b1+b2+…+bn<n+1.
分析:(1)由
x
a(x+2)
=x
,得ax(x+2)=x,故ax2+(2a-1)x=0,由此能求出实数a.
(2)由(1)知,f(x)=
2x
x+2
.由xn+1=f(xn),得
2xn
xn+2
=xn+1
,故
1
xn+1
=
1
xn
+
1
2
,由f(x1)=
1
1003
,得
2x1
x1+2
=
1
1003
,由此能求出数列{xn}的通项公式.
(3)由xn=
2
n+2004
,知an=
n+2004
2
×4-4009
=2n-1,故bn=
an+12+an2
2an+1an
=1+
1
2n-1
-
1
2n+1
,由此能够证明b1+b2+…+bn<n+1.
解答:解:(1)由
x
a(x+2)
=x
,得ax(x+2)=x,
∴ax2+(2a-1)x=0,
当且仅当a=
1
2
时,
f(x)=x有唯一解x=0,∴a=
1
2

(2)由(1)知,f(x)=
2x
x+2

由xn+1=f(xn),得
2xn
xn+2
=xn+1

1
xn+1
=
1
xn
+
1
2

{
1
xn
}
是以
1
x1
为首项,公差为
1
2
的等差数列,
f(x1)=
1
1003
,得
2x1
x1+2
=
1
1003

1
x1
=
2005
2

1
xn
=
1
x1
+
1
2
(n-1)=
n+2004
2

xn=
2
n+2004

(3)∵xn=
2
n+2004
,∴an=
n+2004
2
×4-4009
=2n-1,
bn=
an+12+an2
2an+1an
=
(2n-1)2+(2n+1)2
2(2n-1)(2n+1)

=
4n2+1
4n2-1

=1+
2
4n2-1

=1+
1
2n-1
-
1
2n+1

∴b1+b2+…+bn=1+1-
1
3
+1+
1
3
-
1
5
+1+
1
5
-
1
7
+…+1+
1
2n-1
-
1
2n+1

=1+n-
1
2n-1
<n+1.
点评:本题考查实数值的求法,数列通项公式的求法,证明不等式.解题时要认真审题,仔细解答,注意合理地进行等价转化.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网