题目内容
设f(x)=
,方程f (x)=x有唯一解,数列{xn}满足f (x1)=1,xn+1=f (xn)(n∈N*).
(1)求数列{xn}的通项公式;
(2)已知数列{an}满足a1=
,an+1=
(2+an)2-
(n∈N*),求证:对一切n≥2的正整数都满足
<
+
+…+
<2.
x |
a(x+2) |
(1)求数列{xn}的通项公式;
(2)已知数列{an}满足a1=
1 |
2 |
1 |
4 |
2an |
an+2 |
3 |
4 |
1 |
x1+a1 |
1 |
2x2+a2 |
1 |
nxn+an |
(1)由f(x)=x得ax2+(2a-1)x=0(a≠0)
∴当且仅当a=
时,f(x)=x有唯一解x=0,
∴f(x)=
当f(x1)=
=1得x1=2,由xn+1=f (xn)=
可得
-
=
∴数列{
}是首项为
=
,公差为
的等差数列
∴
=
+
(n-1)=
n
∴xn=
(2)∵a1=
,an+1=
(2+an)2•
=
又a1=
∴
=
=
-
且an>0,
∴
=
-
即
=
-
当n≥2时,
+
+…+
≥
+
=
>
+
+…+
=(
-
)+(
-
)+…+(
-
)
=
-
=2-
<2
∴对一切n≥2的正整数都满足
<
+
+…+
<2.
∴当且仅当a=
1 |
2 |
∴f(x)=
2x |
x+2 |
当f(x1)=
2x1 |
2+x1 |
2xn |
xn+2 |
1 |
xn+1 |
1 |
xn |
1 |
2 |
∴数列{
1 |
xn |
1 |
x1 |
1 |
2 |
1 |
2 |
∴
1 |
xn |
1 |
2 |
1 |
2 |
1 |
2 |
∴xn=
2 |
n |
(2)∵a1=
1 |
2 |
1 |
4 |
2an |
2+an |
(2+an)an |
2 |
1 |
2 |
∴
1 |
an+1 |
2 |
an(2+an) |
1 |
an |
1 |
an+2 |
∴
1 |
an+2 |
1 |
an |
1 |
an+1 |
即
1 |
nxn |
1 |
an |
1 |
an+1 |
当n≥2时,
1 |
x1+a1 |
1 |
2x2+a2 |
1 |
nxn+an |
1 | ||
2+
|
1 | ||
2+
|
82 |
105 |
3 |
4 |
1 |
x1+a1 |
1 |
2x2+a2 |
1 |
nxn+an |
=(
1 |
a1 |
1 |
a2 |
1 |
a2 |
1 |
a3 |
1 |
an |
1 |
an+1 |
=
1 |
a1 |
1 |
an+1 |
1 |
an+1 |
∴对一切n≥2的正整数都满足
3 |
4 |
1 |
x1+a1 |
1 |
2x2+a2 |
1 |
nxn+an |
练习册系列答案
相关题目