题目内容
下列说法:
①命题“存在x ∈R,2x ≤0”的否定是“对任意的x ∈R,2x >0”;
②关于x的不等式a<sin2x+
恒成立,则a的取值范围是a<3;
③函数f(x)=alog2|x|+x+b为奇函数的充要条件是a+b=0;
其中正确的个数是( )
①命题“存在x ∈R,2x ≤0”的否定是“对任意的x ∈R,2x >0”;
②关于x的不等式a<sin2x+
2 |
sin2x |
③函数f(x)=alog2|x|+x+b为奇函数的充要条件是a+b=0;
其中正确的个数是( )
分析:①根据含量词的命题的否定对①进行判断;
②不等式恒成立转化成函数的最值进行判断出;
③通过举反例对③进行判断;
②不等式恒成立转化成函数的最值进行判断出;
③通过举反例对③进行判断;
解答:解:对于①,据含逻辑连接词的命题否定形式:“存在”变为“任意”,结论否定,故①对
对于②∵0≤sin2x≤1,令sin2x=t,
∴sin2x+
=t+
,则令f(t)=t+
,t∈[0,1],根据其图象可知,当x>
时,f(t)为递增的,当0<x≤
时,f(t)为递减的,
∵t∈[0,1],
∴f(t)≥f(1)=1+2=3,
∴sin2x+
≥3
∵a<sin2x+
恒成立时,只要a小于sin2x+
的最小值即可,
a<3故②对
对于③当a=1,b=-1时,虽然有a+b=0,但f(x)不是奇函数,故③错,
故选B.
对于②∵0≤sin2x≤1,令sin2x=t,
∴sin2x+
2 |
sin2x |
2 |
t |
2 |
t |
2 |
2 |
∵t∈[0,1],
∴f(t)≥f(1)=1+2=3,
∴sin2x+
2 |
sin2x |
∵a<sin2x+
2 |
sin2x |
2 |
sin2x |
a<3故②对
对于③当a=1,b=-1时,虽然有a+b=0,但f(x)不是奇函数,故③错,
故选B.
点评:本题考查含量词的命题的否定、不等式恒成立问题,考查的知识点比较多.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目