题目内容
9、在某项测量中,测量结果ξ服从正态分布N(1,σ2)(σ>0),若ξ在(0,1)内的概率为0.4,则ξ在(0,2)内取值的概率为
0.8
.分析:根据变量符合正态分布和ξ在(0,1)内的概率为0.4,由正态分布的对称性可知ξ在(1,2)内的取值概率也为0.4,根据互斥事件的概率得到要求的区间上的概率.
解答:解:∵ξ服从正态分布N(1,σ2),ξ在(0,1)内的概率为0.4,
由正态分布的对称性可知ξ在(1,2)内的取值概率也为0.4,
∴P(0<ξ<2)=P(0<ξ<1)+P(1<ξ<2)=0.4+0.4=0.8
故答案为:0.8
由正态分布的对称性可知ξ在(1,2)内的取值概率也为0.4,
∴P(0<ξ<2)=P(0<ξ<1)+P(1<ξ<2)=0.4+0.4=0.8
故答案为:0.8
点评:本题考查正态分布曲线的特点及曲线所表示的意义,考查概率的基本性质,考查互斥事件的概率公式,本题是一个基础题,运算量不大,不易出错.
练习册系列答案
相关题目
甲乙两名运动员在某项测试中的8次成绩如茎叶图所示,
1,
2分别表示甲乙两名运动员这项测试成绩的平均数,s1,s2分别表示甲乙两名运动员这项测试成绩的标准差,则有( )
. |
x |
. |
x |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
甲、乙两名运动员,在某项测试中的8次成绩如茎叶图所示,
,
分别表示甲、乙两名运动员这项测试成绩的平均数,s1,s2分别表示甲、乙两名运动员这项测试成绩的标准差,则有( )
. |
x1 |
. |
x2 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|