题目内容

在底面为平行四边形的四棱锥V-ABCD中,
VE
=2
EC
,则三棱锥E-BCD与五面体VABED的体积之比为(  )
A、1:3B、1:4
C、1:5D、1:6
分析:直接求出小三棱锥与E-BCD与V-DBC的体积之比,即可得到三棱锥E-BCD与五面体VABED的体积之比.
解答:精英家教网解:因为
VE
=2
EC
,设E到底面ABCD的距离为h则V到底面ABCD的距离为3h,
所以三棱锥与E-BCD与V-DBC的体积之比为:
1
3

那么三棱锥E-BCD与五面体VABED的体积之比为:
1
5

故选C.
点评:本题考查棱锥的体积,考查计算能力,同底等高体积相等,同底不等高体积之比就是高之比,本题是基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网