题目内容
已知f(x)=
(t>0)的定义域为A,不等式x2-4x-12<0的解集为B.记p:x∈A,q:x∈B
(1)当t=2时,试判断p是q的什么条件?
(2)若p是q的必要不充分条件,求实数t的取值范围.
4-tx |
(1)当t=2时,试判断p是q的什么条件?
(2)若p是q的必要不充分条件,求实数t的取值范围.
(1)当t=2时,A={x|x≤2},
B={x|-2<x<6},
∵命题p:x∈A,命题q:x∈B,
∴q推不出p,p推不出q,
∴命题p是命题q的不必要不充分条件.
(2)∵A={x|4-tx≥0},
当t=0时,A=R,此时p是q的必要不充分条件;
当t>0时,A={x|x≤
},
要使得命题p是命题q的必要不充分条件,则
≥6,解得0<t≤
;
当t<0时,A={x|x≥
},
要使得命题p是命题q的必要不充分条件,则
≤-2,解得-2≤t<0;
综上所述,t的取值范围是{a|-2≤t≤
}.
B={x|-2<x<6},
∵命题p:x∈A,命题q:x∈B,
∴q推不出p,p推不出q,
∴命题p是命题q的不必要不充分条件.
(2)∵A={x|4-tx≥0},
当t=0时,A=R,此时p是q的必要不充分条件;
当t>0时,A={x|x≤
4 |
t |
要使得命题p是命题q的必要不充分条件,则
4 |
t |
2 |
3 |
当t<0时,A={x|x≥
4 |
t |
要使得命题p是命题q的必要不充分条件,则
4 |
t |
综上所述,t的取值范围是{a|-2≤t≤
2 |
3 |
练习册系列答案
相关题目