题目内容
已知数列{an}前n项和为Sn,首项为a1,且
,an,Sn成等差数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)数列满足bn=(log2a2n+1)×(log2a2n+3),求证:
+
+
+…+
<
.
1 |
2 |
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)数列满足bn=(log2a2n+1)×(log2a2n+3),求证:
1 |
b1 |
1 |
b2 |
1 |
b3 |
1 |
bn |
1 |
2 |
分析:(Ⅰ)由题意可得2an=Sn+
,令n=1可求a1,n≥2时,Sn=2an-
,Sn-1=2an-1-
,两式相减可得递推式,由递推式可判断该数列为等比数列,从而可得an;
(Ⅱ)表示出bn,进而可得
,并拆项,利用裂项相消法可求和,由和可得结论;
1 |
2 |
1 |
2 |
1 |
2 |
(Ⅱ)表示出bn,进而可得
1 |
bn |
解答:解:(Ⅰ)∵
,an,Sn成等差数列,∴2an=Sn+
,
当n=1时,2a1=a1+
,解得a1=
;
当n≥2时,Sn=2an-
,Sn-1=2an-1-
,
两式相减得:an=Sn-Sn-1=2an-2an-1,∴
=2,
所以数列{an}是首项为
,公比为2的等比数列,an=
×2n-1=2n-2.
(Ⅱ)bn=(log2a2n+1)×(log2a2n+3)
=log222n+1-2×log222n+3-2
=(2n-1)(2n+1),
=
=
(
-
),
则
+
+
+…+
=
[(1-
)+(
-
)+…+(
-
)]
=
(1-
)<
.
1 |
2 |
1 |
2 |
当n=1时,2a1=a1+
1 |
2 |
1 |
2 |
当n≥2时,Sn=2an-
1 |
2 |
1 |
2 |
两式相减得:an=Sn-Sn-1=2an-2an-1,∴
an |
an-1 |
所以数列{an}是首项为
1 |
2 |
1 |
2 |
(Ⅱ)bn=(log2a2n+1)×(log2a2n+3)
=log222n+1-2×log222n+3-2
=(2n-1)(2n+1),
1 |
bn |
1 |
(2n-1)(2n+1) |
1 |
2 |
1 |
2n-1 |
1 |
2n+1 |
则
1 |
b1 |
1 |
b2 |
1 |
b3 |
1 |
bn |
=
1 |
2 |
1 |
3 |
1 |
3 |
1 |
5 |
1 |
2n-1 |
1 |
2n+1 |
=
1 |
2 |
1 |
2n+1 |
1 |
2 |
点评:本题考查数列与不等式的综合,考查裂项相消法对数列求和,考查等比数列的通项公式,属中档题.

练习册系列答案
相关题目