题目内容
已知数列{an}前n项和Sn=n2+2n,设bn=
(1)试求an;
(2)求数列{bn}的前n项和Tn.
1 | anan+1 |
(1)试求an;
(2)求数列{bn}的前n项和Tn.
分析:(1)当n=1时,可得a1=S1=3,当n≥2时,an=Sn-Sn-1=2n+1,验证可得通项;(2)由(1)可得bn=
=
(
-
),裂项相消可得所求.
1 |
anan+1 |
1 |
2 |
1 |
2n+1 |
1 |
2n+3 |
解答:解:(1)当n=1时,可得a1=S1=3
当n≥2时,an=Sn-Sn-1
=n2+2n-(n-1)2-2(n-1)=2n+1,
经验证,n=1时,上式也适合,
故an=2n+1;
(2)由(1)可知an=2n+1,
故bn=
=
=
(
-
)
故数列{bn}的前n项和:
Tn=
[(
-
)+(
-
)+…+(
-
)]
=
(
-
)=
当n≥2时,an=Sn-Sn-1
=n2+2n-(n-1)2-2(n-1)=2n+1,
经验证,n=1时,上式也适合,
故an=2n+1;
(2)由(1)可知an=2n+1,
故bn=
1 |
anan+1 |
1 |
(2n+1)(2n+3) |
1 |
2 |
1 |
2n+1 |
1 |
2n+3 |
故数列{bn}的前n项和:
Tn=
1 |
2 |
1 |
3 |
1 |
5 |
1 |
5 |
1 |
7 |
1 |
2n+1 |
1 |
2n+3 |
=
1 |
2 |
1 |
3 |
1 |
2n+3 |
n |
6n+9 |
点评:本题考查由Sn求an的方法,以及裂项相消法求数列的和,属中档题.
练习册系列答案
相关题目