题目内容
由坐标原点O向函数y=x3-3x2的图象W引切线l1,切点为P1(x1,y1)(P1,O不重合),再由点P1引W的切线l2,切点为P2(x2,y2)(P1,P2不重合),…,如此继续下去得到点列{Pn(xn,yn)}.(Ⅰ)求x1的值;
(Ⅱ)求xn与xn+1满足的关系式;
(Ⅲ)求数列{xn}的通项公式.
分析:(Ⅰ)由y=x3-3x2,知y′=3x2-6x.再由切线l1的方程为y-(x13-3x12)=(3x12-6x1)(x-x1)过点O(0,0),知-(x13-3x12)=-x1(3x12-6x1),由此能求出x1的值.
(Ⅱ)由过点Pn+1(xn+1,yn+1)的切线ln+1的方程为y-(xn+13-3xn+12)=(3xn+12-6xn+1)(x-xn+1)过点Pn(xn,yn),知(xn-xn+1)2(xn+2xn+1-3)=0,由此能求出xn与xn+1满足的关系式.
(Ⅲ)由xn+1=-
xn+
,知xn+1-1=-
(xn-1),
∴{xn-1}是以x1-1=
为首项,-
为公比的等比数列,由此能求出数列{xn}的通项公式.
(Ⅱ)由过点Pn+1(xn+1,yn+1)的切线ln+1的方程为y-(xn+13-3xn+12)=(3xn+12-6xn+1)(x-xn+1)过点Pn(xn,yn),知(xn-xn+1)2(xn+2xn+1-3)=0,由此能求出xn与xn+1满足的关系式.
(Ⅲ)由xn+1=-
1 |
2 |
3 |
2 |
1 |
2 |
∴{xn-1}是以x1-1=
1 |
2 |
1 |
2 |
解答:解:(Ⅰ)∵y=x3-3x2,∴y′=3x2-6x.
∵过点P1(x1,y1)的切线l1的方程为y-(x13-3x12)=(3x12-6x1)(x-x1),
又l1过点O(0,0),
∴-(x13-3x12)=-x1(3x12-6x1),
∴2x13=3x12,∴x1=
或x1=0.∵P1与O不重合,
∴x1=
.(5分)
(Ⅱ)∵过点Pn+1(xn+1,yn+1)的切线ln+1的方程为y-(xn+13-3xn+12)=(3xn+12-6xn+1)(x-xn+1),
又ln+1过点Pn(xn,yn),
∴xn3-3xn2-(xn+13-3xn+12)=(3xn+12-6xn+1)(xn-xn+1),
整理得(xn-xn+1)2(xn+2xn+1-3)=0,
由已知得xn≠xn+1,
∴xn+2xn+1=3.(10分)
(Ⅲ)∵xn+1=-
xn+
,
∴xn+1-1=-
(xn-1),
∴{xn-1}是以x1-1=
为首项,-
为公比的等比数列,
∴xn-1=
(-
)n-1,
即xn=1-(-
)n.(14分)
∵过点P1(x1,y1)的切线l1的方程为y-(x13-3x12)=(3x12-6x1)(x-x1),
又l1过点O(0,0),
∴-(x13-3x12)=-x1(3x12-6x1),
∴2x13=3x12,∴x1=
3 |
2 |
∴x1=
3 |
2 |
(Ⅱ)∵过点Pn+1(xn+1,yn+1)的切线ln+1的方程为y-(xn+13-3xn+12)=(3xn+12-6xn+1)(x-xn+1),
又ln+1过点Pn(xn,yn),
∴xn3-3xn2-(xn+13-3xn+12)=(3xn+12-6xn+1)(xn-xn+1),
整理得(xn-xn+1)2(xn+2xn+1-3)=0,
由已知得xn≠xn+1,
∴xn+2xn+1=3.(10分)
(Ⅲ)∵xn+1=-
1 |
2 |
3 |
2 |
∴xn+1-1=-
1 |
2 |
∴{xn-1}是以x1-1=
1 |
2 |
1 |
2 |
∴xn-1=
1 |
2 |
1 |
2 |
即xn=1-(-
1 |
2 |
点评:本题考查数列的性质和应用,解题时要认真审题,仔细解答.
练习册系列答案
相关题目