题目内容

已知曲线C?x2-y2=1及直线l:y=kx-1.
(1)若l与C左支交于两个不同的交点,求实数k的取值范围;
(2)若l与C交于A、B两点,O是坐标原点,且△AOB的面积为
2
,求实数k的值.
分析:(1)将直线与双曲线联立,利用l与C左支交于两个不同的交点,结合韦达定理,建立不等式,从而可求实数k的取值范围;
(2)利用韦达定理,结合△AOB的面积为
2
,可建立k的方程,从而可求实数k的值.
解答:解:(1)由
x2-y2=1
y=kx-1
消去y,得(1-k2)x2+2kx-2=0.
∵l与C左支交于两个不同的交点
1-k2≠0
△=4k2+8(1-k2)>0 
且 x1+x2=-
2k
1-k2
<0,x1x2=-
2
1-k2
>0
∴k的取值范围为 (-
2
,-1)
(2)设A(x1,y1)、B(x2,y2),
由(1)得 x1+x2=-
2k
1-k2
,x1x2=-
2
1-k2

又l过点D(0,-1),
∴S△OAB=
1
2
|x1-x2|=
2

∴(x1-x22=(2
2
2,即(-
2k
1-k2
2+
8
1-k2
=8.
∴k=0或k=±
6
2
点评:本题重点考查直线与双曲线的位置关系,考查韦达定理的运用,考查三角形面积的计算,综合性强.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网