题目内容

已知圆C方程为:x2+y2=4.
(Ⅰ)直线l过点P(1,2),且与圆C交于A、B两点,若|AB|=2
3
,求直线l的方程;
(Ⅱ)过圆C上一动点M作平行于x轴的直线m,设m与y轴的交点为N,若向量
OQ
=
OM
+
ON
,求动点Q的轨迹方程,并说明此轨迹是什么曲线.
分析:(Ⅰ)分类讨论:①当直线l垂直于x轴时;②若直线l不垂直于x轴.对于②,设其方程为y-2=k(x-1),结合直线与圆的位置关系利用弦长公式即可求得k值,从而解决问题.
(Ⅱ)设点M的坐标为(x0,y0)(y0≠0),Q点坐标为(x,y),利用向量的坐标运算表示出M的坐标,再利用M点在圆上其坐标适合方程即可求得动点Q的轨迹方程,最后利用方程的形式进行判断是什么曲线即可.
解答:解(Ⅰ)①当直线l垂直于x轴时,
则此时直线方程为x=1,l与圆的两个交点坐标为(1,
3
)
(1,-
3
)

其距离为2
3
满足题意(1分)
②若直线l不垂直于x轴,设其方程为y-2=k(x-1),即kx-y-k+2=0
设圆心到此直线的距离为d,则2
3
=2
4-d2
,得d=1(3分)
1=
|-k+2|
k2+1
k=
3
4

故所求直线方程为3x-4y+5=0
综上所述,所求直线为3x-4y+5=0或x=1(7分)

(Ⅱ)设点M的坐标为(x0,y0)(y0≠0),Q点坐标为(x,y)
则N点坐标是(0,y0)(9分)
OQ
=
OM
+
ON

∴(x,y)=(x0,2y0)即x0=x,y0=
y
2
(11分)
又∵x02+y02=4,∴x2+
y2
4
=4(y≠0)

∴Q点的轨迹方程是
x2
4
+
y2
16
=1(y≠0)
,(13分)
轨迹是一个焦点在y轴上的椭圆,除去长轴端点.(14分)
点评:本小题主要考查直线的一般式方程、直线和圆的方程的应用、轨迹方程的解法等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网