题目内容
设为等差数列,为其前项和,且,则
A. B. C. D.
B
【解析】略
(14分)设集合W由满足下列两个条件的数列构成:①②存在实数M,使(n为正整数)(I)在只有5项的有限数列;试判断数列是否为集合W的元素;(II)设是等差数列,是其前n项和,证明数列;并写出M的取值范围;(III)设数列且对满足条件的常数M,存在正整数k,使求证:
(本小题满分12分)设是单调递增的等差数列,为其前n项和,且满足是的等比中项.
(I)求数列的通项公式;
(II)是否存在,使?说明理由;
(III)若数列满足求数列的通项公式.
(14分)
设集合W由满足下列两个条件的数列构成:
①
②存在实数M,使(n为正整数)
(I)在只有5项的有限数列
;试判断数列是否为集合W的元素;
(II)设是等差数列,是其前n项和,证明数列;并写出M的取值范围;
(III)设数列且对满足条件的常数M,存在正整数k,使
求证: