ÌâÄ¿ÄÚÈÝ
£¨2012•ãÉÐÐÇøһģ£©ÒÑÖªÏ߶ÎABÉÏÓÐ10¸öÈ·¶¨µÄµã£¨°üÀ¨¶ËµãAÓëB£©£®ÏÖ¶ÔÕâЩµã½øÐÐÍù·µ±êÊý
£¨´ÓA¡úB¡úA¡úB¡ú¡½øÐбêÊý£¬Óöµ½Í¬·½Ïòµã²»¹»Êýʱ¾Í¡°µ÷Í·¡±Íù»ØÊý£©£®
Èçͼ£ºÔÚµãAÉϱê1£¬³ÆΪµã1£¬È»ºó´Óµã1¿ªÊ¼Êýµ½µÚ¶þ¸öÊý£¬±êÉÏ2£¬³ÆΪµã2£¬ÔÙ´Óµã2¿ªÊ¼Êýµ½µÚÈý¸öÊý£¬±êÉÏ3£¬³ÆΪµã3£¨±êÉÏÊýnµÄµã³ÆΪµãn£©£¬¡£¬ÕâÑùÒ»Ö±¼ÌÐøÏÂÈ¥£¬Ö±µ½1£¬2£¬3£¬¡£¬2012¶¼±»±ê¼Çµ½µãÉÏ£®Ôòµã2012ÉϵÄËùÓбê¼ÇµÄÊýÖУ¬×îСµÄÊÇ
£¨´ÓA¡úB¡úA¡úB¡ú¡½øÐбêÊý£¬Óöµ½Í¬·½Ïòµã²»¹»Êýʱ¾Í¡°µ÷Í·¡±Íù»ØÊý£©£®
Èçͼ£ºÔÚµãAÉϱê1£¬³ÆΪµã1£¬È»ºó´Óµã1¿ªÊ¼Êýµ½µÚ¶þ¸öÊý£¬±êÉÏ2£¬³ÆΪµã2£¬ÔÙ´Óµã2¿ªÊ¼Êýµ½µÚÈý¸öÊý£¬±êÉÏ3£¬³ÆΪµã3£¨±êÉÏÊýnµÄµã³ÆΪµãn£©£¬¡£¬ÕâÑùÒ»Ö±¼ÌÐøÏÂÈ¥£¬Ö±µ½1£¬2£¬3£¬¡£¬2012¶¼±»±ê¼Çµ½µãÉÏ£®Ôòµã2012ÉϵÄËùÓбê¼ÇµÄÊýÖУ¬×îСµÄÊÇ
3
3
£®·ÖÎö£ºÈ·¶¨±êÓÐ2012µÄÊÇ1+2+3+¡+2012=2025078ºÅ£¬2025078³ýÒÔ18µÄÓàÊýΪ6£¬¼´Ï߶εĵÚ6¸öµã±êΪ2012£¬ÄÇô6+18n=1+2+3+¡+k=
£¬¼´12+36n=k£¨k+1£©£¬Áîn=0£¬¼´¿ÉµÃ½áÂÛ£®
k(k+1) |
2 |
½â´ð£º½â£º¼Ç±êÓÐ1ΪµÚ1ºÅ£¬ÓÉÓÚ¶ÔÕâЩµã½øÐÐÍù·µ±êÊý£¨´ÓA¡úB¡úA¡úB¡ú¡½øÐбêÊý£¬Óöµ½Í¬·½Ïòµã²»¹»Êýʱ¾Í¡°µ÷Í·¡±Íù»ØÊý£©£¬Ôò±êÓÐ2µÄÊÇ1+2ºÅ£¬±êÓÐ3µÄÊÇ1+2+3ºÅ£¬±êÓÐ4µÄÊÇ1+2+3+4£¬¡£¬±êÓÐ2012µÄÊÇ1+2+3+¡+2012=2025078ºÅ£®¿¼ÂÇΪһԲÖÜ£¬ÔòÔ²ÖÜÉϹ²18¸öµã
ËùÒÔ2025078³ýÒÔ18µÄÓàÊýΪ6£¬¼´Ï߶εĵÚ6¸öµã±êΪ2012£¬ÄÇô6+18n=1+2+3+¡+k=
£¬
¼´12+36n=k£¨k+1£©£®
µ±n=0ʱ£¬k£¨k+1£©=12£¬k=3Âú×ãÌâÒ⣬Ëæ×ÅnµÄÔö´ó£¬kÒ²Ôö´ó£®
ËùÒÔ£¬±êÓÐ2012µÄÄǸöµãÉϱê³öµÄ×îСÊýΪ3£®
¹Ê´ð°¸Îª£º3
ËùÒÔ2025078³ýÒÔ18µÄÓàÊýΪ6£¬¼´Ï߶εĵÚ6¸öµã±êΪ2012£¬ÄÇô6+18n=1+2+3+¡+k=
k(k+1) |
2 |
¼´12+36n=k£¨k+1£©£®
µ±n=0ʱ£¬k£¨k+1£©=12£¬k=3Âú×ãÌâÒ⣬Ëæ×ÅnµÄÔö´ó£¬kÒ²Ôö´ó£®
ËùÒÔ£¬±êÓÐ2012µÄÄǸöµãÉϱê³öµÄ×îСÊýΪ3£®
¹Ê´ð°¸Îª£º3
µãÆÀ£º±¾Ì⿼²éºÏÇéÍÆÀí£¬¿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿