题目内容

17.已知变量x、y满足:$\left\{\begin{array}{l}{x≥0}\\{x+3≥2y}\\{y≥2x}\end{array}\right.$,则z=($\sqrt{2}$)x+y的最大值为2$\sqrt{2}$.

分析 首先画出可行域,求出x+y的最大值,然后求z 的最大值.

解答 解:不等式组表示的平面区域如图当直线a=x+y过A时a最大,即z最大,
由$\left\{\begin{array}{l}{x+3=2y}\\{y=2x}\end{array}\right.$得A(1,2)
所以${z}_{max}=(\sqrt{2})^{1+2}=2\sqrt{2}$;
故答案为:2$\sqrt{2}$.

点评 本题考查了简单线性规划问题;关键是画出平面区域,利用目标函数的几何意义求最值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网