题目内容

【题目】已知椭圆C: (a>b>0)经过点( ,1),过点A(0,1)的动直线l与椭圆C交于M、N两点,当直线l过椭圆C的左焦点时,直线l的斜率为
(1)求椭圆C的方程;
(2)是否存在与点A不同的定点B,使得∠ABM=∠ABN恒成立?若存在,求出点B的坐标;若不存在,请说明理由.

【答案】
(1)

解:椭圆C: (a>b>0)经过点( ,1),

可得 + =1,又设左焦点为(﹣c,0),有 =

即c= ,a2﹣b2=2,解得a=2,b=

则椭圆方程为


(2)

解:假设存在与点A不同的定点B,使得∠ABM=∠ABN恒成立.

当直线MN的斜率为0时,由对称性可得B在y轴上,设为B(0,t),

设直线MN的方程为x=my+1,

代入椭圆方程可得,(2+m2)y2+2my﹣3=0,

设M(x1,y1),N(x2,y2),

可得y1+y2=﹣ ,y1y2=﹣

由假设可得kBM+kBN=0,

即为 + =0,

即有x1y2+x2y1=t(x1+x2),

即m(y1+1)y2+(my2+1)y1=t[m(y1+y2)+2],

即有2my1y2+(y1+y2)=t[m(y1+y2)+2],

即为 =t(﹣ +2),

化为﹣8m=4t,即t+2m=0,由于m为任意的,则t不为定值.

故不存在与点A不同的定点B,使得∠ABM=∠ABN恒成立


【解析】(1)将点( ,1)代入椭圆方程,设左焦点为(﹣c,0),再由斜率公式,可得c的值,结合a,b,c的关系,即可得到椭圆方程;(2)假设存在与点A不同的定点B,使得∠ABM=∠ABN恒成立.当直线MN的斜率为0时,由对称性可得B在y轴上,设为B(0,t),设直线MN的方程为x=my+1,代入椭圆方程,运用韦达定理,设M(x1 , y1),N(x2 , y2),由假设可得kBM+kBN=0,化简整理,可得t+2m=0,故不存在这样的定点B.
【考点精析】本题主要考查了椭圆的标准方程的相关知识点,需要掌握椭圆标准方程焦点在x轴:,焦点在y轴:才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网