ÌâÄ¿ÄÚÈÝ
ÒÑÖªº¯Êýf£¨x£©=1 | a-x |
¶ÔÓÚ¸ø¶¨µÄ¶¨ÒåÓòÖеÄx1£¬Áîx2=f£¨x1£©£¬x3=f£¨x2£©£¬¡£¬xn=f£¨xn-1£©£¬¡
ÔÚÉÏÊö¹¹Ôì¹ý³ÌÖУ¬Èç¹ûxi£¨i=1£¬2£¬3£¬¡£©ÔÚ¶¨ÒåÓòÖУ¬ÄÇô¹¹ÔìÊýÁеĹý³Ì¼ÌÐøÏÂÈ¥£»Èç¹ûxi²»ÔÚ¶¨ÒåÓòÖУ¬ÄÇô¹¹ÔìÊýÁеĹý³Ì¾ÍÍ£Ö¹£®
£¨¢ñ£©µ±a=1ÇÒx1=-1ʱ£¬ÇóÊýÁÐ{xn}µÄͨÏʽ£»
£¨¢ò£©Èç¹û¿ÉÒÔÓÃÉÏÊö·½·¨¹¹Ôì³öÒ»¸ö³£ÊýÁУ¬ÇóaµÄÈ¡Öµ·¶Î§£»
£¨¢ó£©ÊÇ·ñ´æÔÚʵÊýa£¬Ê¹µÃÈ¡¶¨ÒåÓòÖеÄÈÎһʵÊýÖµ×÷Ϊx1£¬¶¼¿ÉÓÃÉÏÊö·½·¨¹¹Ôì³öÒ»¸öÎÞÇîÊýÁÐ{xn}£¿Èô´æÔÚ£¬Çó³öaµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö£º£¨¢ñ£©µ±a=1ʱ£¬f(x)=
£¬ËùÒÔ£¬xn+1=
£®Á½±ßÈ¡µ¹Êý£¬µÃ
=
=
-1£¬ÓɵȲîÊýÁж¨ÒåÇó½â£®
£¨¢ò£©¹¹Ôì³öÒ»¸ö³£ÊýÁУ¬¼´£ºµ±x¡Ùaʱ£¬·½³Ìf£¨x£©=xÓн⣬¼´·½³Ìx2+£¨1-a£©x+1-a=0Óв»µÈÓÚaµÄ½â£®ÓÉ¡÷=£¨1-a£©2-4£¨1-a£©¡Ý0Çó½â£®
£¨¢ó£©ÓÃÉÏÊö·½·¨¹¹Ôì³öÒ»¸öÎÞÇîÊýÁÐ{xn}£¬¼´£º
=aÔÚRÖÐÎ޽⣮¼´µ±x¡Ùaʱ£¬·½³Ì£¨1+a£©x=a2+a-1ÎÞʵÊý½â£®ÔòÓÐ
Çó½â£¬ÓнâÔò´æÔÚ£¬ÎÞ½âÔò²»´æÔÚ£®
x |
1-x |
xn |
1-xn |
1 |
xn+1 |
1-xn |
xn |
1 |
xn |
£¨¢ò£©¹¹Ôì³öÒ»¸ö³£ÊýÁУ¬¼´£ºµ±x¡Ùaʱ£¬·½³Ìf£¨x£©=xÓн⣬¼´·½³Ìx2+£¨1-a£©x+1-a=0Óв»µÈÓÚaµÄ½â£®ÓÉ¡÷=£¨1-a£©2-4£¨1-a£©¡Ý0Çó½â£®
£¨¢ó£©ÓÃÉÏÊö·½·¨¹¹Ôì³öÒ»¸öÎÞÇîÊýÁÐ{xn}£¬¼´£º
x+1-a |
a-x |
|
½â´ð£º½â£º£¨¢ñ£©µ±a=1ʱ£¬f£¨x£©=
£¬
ËùÒÔ£¬xn+1=
£®
Á½±ßÈ¡µ¹Êý£¬µÃ
=
=
-1£¬
¼´
-
=-1£®ÓÖ
=-1£¬
ËùÒÔÊýÁÐ{
}ÊÇÊ×ÏîΪ-1£¬¹«²îd=-1µÄµÈ²îÊýÁУ®£¨3·Ö£©
¹Ê
=-1+£¨n-1£©•£¨-1£©=-n£¬
ËùÒÔxn=-
£¬
¼´ÊýÁÐ{xn}µÄͨÏʽΪxn=-
£¬n¡ÊN*£®£¨4·Ö£©
£¨¢ò£©¸ù¾ÝÌâÒ⣬ֻÐèµ±x¡Ùaʱ£¬·½³Ìf£¨x£©=xÓн⣬£¨5·Ö£©
¼´·½³Ìx2+£¨1-a£©x+1-a=0Óв»µÈÓÚaµÄ½â£®
½«x=a´úÈë·½³Ì×ó±ß£¬×ó±ßΪ1£¬ÓëÓұ߲»ÏàµÈ£®
¹Ê·½³Ì²»¿ÉÄÜÓнâx=a£®£¨7·Ö£©
ÓÉ¡÷=£¨1-a£©2-4£¨1-a£©¡Ý0£¬µÃa¡Ü-3»òa¡Ý1£®
¼´ÊµÊýaµÄÈ¡Öµ·¶Î§ÊÇ£¨-¡Þ£¬-3]¡È[1£¬+¡Þ£©£®£¨10·Ö£©
£¨¢ó£©¼ÙÉè´æÔÚʵÊýa£¬Ê¹µÃÈ¡¶¨ÒåÓòÖеÄÈÎһʵÊýÖµ×÷Ϊx1£¬¶¼¿ÉÒÔÓÃÉÏÊö·½·¨¹¹Ôì³öÒ»¸öÎÞÇîÊýÁÐ{xn}£¬ÄÇô¸ù¾ÝÌâÒâ¿ÉÖª£¬
=aÔÚRÖÐÎ޽⣬£¨12·Ö£©
¼´µ±x¡Ùaʱ£¬·½³Ì£¨1+a£©x=a2+a-1ÎÞʵÊý½â£®
ÓÉÓÚx=a²»ÊÇ·½³Ì£¨1+a£©x=a2+a-1µÄ½â£¬
ËùÒÔ¶ÔÓÚÈÎÒâx¡ÊR£¬·½³Ì£¨1+a£©x=a2+a-1ÎÞʵÊý½â£¬
Òò´Ë
½âµÃa=-1£®
¹Êa=-1¼´ÎªËùÇóaµÄÖµ£®£¨14·Ö£©
x |
1-x |
ËùÒÔ£¬xn+1=
xn |
1-xn |
Á½±ßÈ¡µ¹Êý£¬µÃ
1 |
xn+1 |
1-xn |
xn |
1 |
xn |
¼´
1 |
xn+1 |
1 |
xn |
1 |
x1 |
ËùÒÔÊýÁÐ{
1 |
xn |
¹Ê
1 |
xn |
ËùÒÔxn=-
1 |
n |
¼´ÊýÁÐ{xn}µÄͨÏʽΪxn=-
1 |
n |
£¨¢ò£©¸ù¾ÝÌâÒ⣬ֻÐèµ±x¡Ùaʱ£¬·½³Ìf£¨x£©=xÓн⣬£¨5·Ö£©
¼´·½³Ìx2+£¨1-a£©x+1-a=0Óв»µÈÓÚaµÄ½â£®
½«x=a´úÈë·½³Ì×ó±ß£¬×ó±ßΪ1£¬ÓëÓұ߲»ÏàµÈ£®
¹Ê·½³Ì²»¿ÉÄÜÓнâx=a£®£¨7·Ö£©
ÓÉ¡÷=£¨1-a£©2-4£¨1-a£©¡Ý0£¬µÃa¡Ü-3»òa¡Ý1£®
¼´ÊµÊýaµÄÈ¡Öµ·¶Î§ÊÇ£¨-¡Þ£¬-3]¡È[1£¬+¡Þ£©£®£¨10·Ö£©
£¨¢ó£©¼ÙÉè´æÔÚʵÊýa£¬Ê¹µÃÈ¡¶¨ÒåÓòÖеÄÈÎһʵÊýÖµ×÷Ϊx1£¬¶¼¿ÉÒÔÓÃÉÏÊö·½·¨¹¹Ôì³öÒ»¸öÎÞÇîÊýÁÐ{xn}£¬ÄÇô¸ù¾ÝÌâÒâ¿ÉÖª£¬
x+1-a |
a-x |
¼´µ±x¡Ùaʱ£¬·½³Ì£¨1+a£©x=a2+a-1ÎÞʵÊý½â£®
ÓÉÓÚx=a²»ÊÇ·½³Ì£¨1+a£©x=a2+a-1µÄ½â£¬
ËùÒÔ¶ÔÓÚÈÎÒâx¡ÊR£¬·½³Ì£¨1+a£©x=a2+a-1ÎÞʵÊý½â£¬
Òò´Ë
|
¹Êa=-1¼´ÎªËùÇóaµÄÖµ£®£¨14·Ö£©
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éº¯ÊýÓëÊýÁеÄ×ÛºÏÔËÓã¬Ö÷ÒªÉæ¼°Á˵ȲîÊýÁеĶ¨Ò壬ͨÏîÊýÁеĴæÔÚÐÔÓë·½³ÌÓÐÎÞ¸ùµÄ¹Øϵ£®ÊôÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
ÒÑÖªº¯Êýf£¨x£©=
£¬g£¨x£©=1+
£¬Èôf£¨x£©£¾g£¨x£©£¬ÔòʵÊýxµÄÈ¡Öµ·¶Î§ÊÇ£¨¡¡¡¡£©
1 |
|x| |
x+|x| |
2 |
A¡¢£¨-¡Þ£¬-1£©¡È£¨0£¬1£© | ||||
B¡¢(-¡Þ£¬-1)¡È(0£¬
| ||||
C¡¢(-1£¬0)¡È(
| ||||
D¡¢(-1£¬0)¡È(0£¬
|