题目内容

(1)求
2x-1
3x+1
>0
的解集
(2)设x>0,y>0且x+y=1,求
2
x
+
1
y
的最小值.
分析:(1)由
2x-1
3x+1
>0
?(2x-1)(3x+1)>0,再利用一元二次不等式的解法即可得出;
(2)利用“乘1法”和基本不等式即可得出.
解答:解:(1)由
2x-1
3x+1
>0
?(2x-1)(3x+1)>0,解得x>
1
2
x<-
1
3
,因此不等式的解集为{x|x>
1
2
x<-
1
3
}.
(2)∵x>0,y>0且x+y=1,∴
2
x
+
1
y
=(x+y)(
2
x
+
1
y
)
=3+
2y
x
+
x
y
≥3+2
2y
x
x
y
=3+2
2
,当且仅当x=
2
y=
2
(
2
-1)=2-
2
时取等号.
2
x
+
1
y
的最小值是3+2
2
点评:熟练掌握把分式不等式等价转化为一元二次不等式的解法、“乘1法”和基本不等式等是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网