题目内容
【题目】已知函数,.
(1)当时,
①求函数在点处的切线方程;
②比较与的大小;
(2)当时,若对时,,且有唯一零点,证明:.
【答案】(1)①见解析,②见解析;(2)见解析
【解析】
(1)①把代入函数解析式,求出函数的导函数得到,再求出,利用直线方程的点斜式求函数在点处的切线方程;
②令,利用导数研究函数的单调性,可得当时,;当时,;当时,.
(2)由题意,,在上有唯一零点.利用导数可得当时,在上单调递减,当,时,在,上单调递增,得到.由在恒成立,且有唯一解,可得,得,即.令,则,再由在上恒成立,得在上单调递减,进一步得到在上单调递增,由此可得.
解:(1)①当时,,,,
又,切线方程为,即;
②令,
则,
在上单调递减.
又,
当时,,即;
当时,,即;
当时,,即.
证明:(2)由题意,,
而,
令,解得.
,,
在上有唯一零点.
当时,,在上单调递减,
当,时,,在,上单调递增.
.
在恒成立,且有唯一解,
,即,
消去,得,
即.
令,则,
在上恒成立,
在上单调递减,
又, ,
.
在上单调递增,
.
【题目】某手机软件研发公司为改进产品,对软件用户每天在线的时间进行调查,随机抽取40名男性与20名女性对其每天在线的时间进行了调查统计,并绘制了如图所示的条形图,其中每天的在线时间4h以上(包括4h)的用户被称为“资深用户”.
(1)根据上述样本数据,完成下面的2×2列联表,并判定是否有95%的把握认为是否为“资深用户”与性别有关;
“资深用户” | 非“资深用户” | 总计 | |
男性 | |||
女性 | |||
总计 |
(2)用样本估计总体,若从全体用户中随机抽取3人,设这3人中“资深用户”的人数为X,求随机变量X的分布列与数学期望.
附:,其中n=a+b+c+d.
P(K2≥k0) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
k0 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |