题目内容
在区间内随机取两个数分别记为,则使得函数有零点的概率为( )
A. | B. | C. | D. |
B
解析试题分析:先判断概率的类型,由题意知本题是一个几何概型,由a,b使得函数f(x)=x2+2ax-b2+π有零点,得到关于a、b的关系式,写出试验发生时包含的所有事件和满足条件的事件,做出对应的面积,求比值得到结果.解:由题意知本题是一个几何概型,∵a,b使得函数f(x)=x2+2ax-b2+π有零点,∴△≥0∴a2+b2≥π试验发生时包含的所有事件是Ω={(a,b)|-π aπ,-πbπ}∴S=(2π)2=4π2,而满足条件的事件是{(a,b)|a2+b2≥π},∴s=4π2-π2=3π2,由几何概型公式得到P=,故选B.
考点:几何概型
点评:高中必修中学习了几何概型和古典概型两种概率问题,先要判断该概率模型是不是古典概型,再要找出随机事件A包含的基本事件的个数和试验中基本事件的总数.再看是不是几何概型,它的结果要通过长度、面积或体积之比来得到
练习册系列答案
相关题目
如果随机变量,且,则等于( )
A.0.4 | B.0.3 | C.0.2 | D.0.1 |
在上任取两数和组成有序数对,记事件为“”,则( )
A. | B. | C. | D. |
把红,黄,蓝,白4张纸牌随机地分发给甲,乙,丙,丁四个人,每人一张,则事件"甲分得红牌"与事件"丁分得红牌"是( )
A.不可能事件 | B.互斥但不对立事件 | C.对立事件 | D.以上答案都不对 |