ÌâÄ¿ÄÚÈÝ

£¨2012•¾£ÖÝÄ£Ä⣩ÒÑÖªÊýÁÐ{an}¡¢{bn}£¬an£¾0£¬a1=6£¬µãAn(an£¬
an+1
)
ÔÚÅ×ÎïÏßy2=x+1ÉÏ£»µãBn£¨n£¬bn£©ÔÚÖ±Ïßy=2x+1ÉÏ£®
£¨1£©ÇóÊýÁÐ{an}¡¢{bn}µÄͨÏʽ£»
£¨2£©Èôf(n)=
an
bn
nΪÆæÊý
nΪżÊý
£¬ÎÊÊÇ·ñ´æÔÚk¡ÊN*£¬Ê¹f£¨k+15£©=2f£¨k£©³ÉÁ¢£¬Èô´æÔÚ£¬Çó³ökÖµ£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£»
£¨3£©¶ÔÈÎÒâÕýÕûÊýn£¬²»µÈʽ
an
(1+
1
b1
)(1+
1
b2
)¡­(1+bn)
-
an-1
n-2+an
¡Ü0
³ÉÁ¢£¬ÇóÕýʵÊýaµÄÈ¡Öµ·¶Î§£®
·ÖÎö£º£¨1£©ÓɵãAn(an£¬
an+1
)
ÔÚÅ×ÎïÏßy2=x+1ÉÏ£¬Öªan+1=an+1£¬ÓÉ´ËÄÜÇó³öan=n+5£®ÓɵãBn£¨n£¬bn£©ÔÚÖ±Ïßy=2x+1ÉÏ£®ÄÜÇó³öbn=2n+1£®
£¨2£©ÓÉf(n)=
an£¬nΪÆæÊý
bn£¬nΪżÊý
£¬Öªµ±kΪÆæÊýʱ£¬k+15ΪżÊý£¬¹Ê2£¨k+15£©+1=2£¨k+5£©£¬ÏÔÈ»²»³ÉÁ¢£®µ±kΪżÊýʱ£¬k+15ΪÆæÊý£¬ÔòÓÐk+20=2£¨2k+1£©£¬ÓÉ´ËÄÜÇó³ök£®
£¨3£©ÓÉ
an
(1+
1
b1
)(1+
1
b2
)¡­(1+bn)
-
an-1
n-2+an
¡Ü0
£¬µÃ£ºa¡Ü
1
2n+3
(1+
1
b1
)(1+
1
b2
)¡­(1+
1
bn
)
£¬¼Çg£¨n£©=
1
2n+3
(1+
1
b1
)(1+
1
b2
)¡­(1+
1
bn
)
£¬ÓÉ´ËÄÜÇó³öÕýʵÊýaµÄÈ¡Öµ·¶Î§£®
½â´ð£º½â£º£¨1£©¡ßµãAn(an£¬
an+1
)
ÔÚÅ×ÎïÏßy2=x+1ÉÏ£¬
¡àan+1=an+1£¬
¡ßan£¾0£¬a1=6£¬
¡à{an}ÊÇÊ×Ïîa1=6£¬¹«²îd=an+1-an=1µÄµÈ²îÊýÁУ¬
¡àan=n+5£®
¡ßµãBn£¨n£¬bn£©ÔÚÖ±Ïßy=2x+1ÉÏ£®
¡àbn=2n+1¡­£¨4·Ö£©
£¨2£©f(n)=
an£¬nΪÆæÊý
bn£¬nΪżÊý
£¬
µ±kΪÆæÊýʱ£¬k+15ΪżÊý£¬
¡à2£¨k+15£©+1=2£¨k+5£©£¬ÏÔÈ»²»³ÉÁ¢£®
µ±kΪżÊýʱ£¬k+15ΪÆæÊý£¬ÔòÓÐk+20=2£¨2k+1£©£¬½âµÃk=6£®¡­£¨8·Ö£©
£¨3£©ÓÉ
an
(1+
1
b1
)(1+
1
b2
)¡­(1+bn)
-
an-1
n-2+an
¡Ü0
£¬
µÃ£ºa¡Ü
1
2n+3
(1+
1
b1
)(1+
1
b2
)¡­(1+
1
bn
)
£¬
¼Çg£¨n£©=
1
2n+3
(1+
1
b1
)(1+
1
b2
)¡­(1+
1
bn
)
£¬
Ôò
g(n+1)
g(n)
=
2n+3
2n+5
(1+
1
bn+1
)=
2n+3
2n+5
2n+4
2n+3
=
(2n+4)2
2n+5
2n+3
£¾1

¡àg£¨n+1£©£¾g£¨n£©£¬¼´g£¨n£©µÝÔö£®
¡àg(n)min=g(1)=
1
5
4
3
=
4
5
15
£¬
¼´0£¼a¡Ü
4
5
15
£®¡­£¨13·Ö£©
µãÆÀ£º±¾Ì⿼²éÊýÁеÄͨÏʽµÄÇ󷨡¢ÊµÊýkÊÇ·ñ´æÔÚµÄÅжϺÍÇóÕýʵÊýaµÄÈ¡Öµ·¶Î§£®×ÛºÏÐÔÇ¿£¬ÄѶȴó£¬ÊǸ߿¼µÄÖص㣮½âÌâʱҪÈÏÕæÉóÌ⣬עÒâÍÚ¾òÌâÉèÖеÄÒþº¬Ìõ¼þ£¬ºÏÀíµØ½øÐеȼÛת»¯£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø