题目内容
求下列三角函数值
(1)sin(-1380°)cos1110°+cos(-1020°)sin750°;
(2)2sin
-cos4π+tan(-
).
(1)sin(-1380°)cos1110°+cos(-1020°)sin750°;
(2)2sin
5π |
4 |
π |
4 |
(1)sin(-1380°)cos1110°+cos(-1020°)sin750°
=sin(-360°×4+60°)cos(3×360°+30°)+cos(-3×360°+60°)sin(2×360°+30°)
=sin60°cos30°+cos60°sin30°
=sin(60°+30°)
=sin90°
=1;
(2)2sin
-cos4π+tan(-
)
=2sin(π+
)-cos4π-tan
=-2sin
-1-1
=-
-2.
=sin(-360°×4+60°)cos(3×360°+30°)+cos(-3×360°+60°)sin(2×360°+30°)
=sin60°cos30°+cos60°sin30°
=sin(60°+30°)
=sin90°
=1;
(2)2sin
5π |
4 |
π |
4 |
=2sin(π+
π |
4 |
π |
4 |
=-2sin
π |
4 |
=-
2 |
练习册系列答案
相关题目
求下列三角函数值
(可用计算器):
(1) ; |
(2) ; |
(3)cos398°13′ ; |
(4)tan766°15′ . |