题目内容

设函数
(I)求证:当且仅当a≥1时,f(x)在[0,+∞)内为单调函数;
(II)求a的取值范围,使函数f(x)在区间[1,+∞)上是增函数.
【答案】分析:(I)先求函数的导数f′(x),再证明a≥1时,f′(x)<0,f(x)单调;而a<1时,f′(x)先负后正,f(x)不单调
(II)由(1)知a≥1时f(x)单调递减,不合题意,当0<a<1时,使函数f(x)在区间[1,+∞)上是增函数,需[1,+∞)是函数单调增区间的子区间,可求a的范围
解答:解:(I)∵
①当a≥1时,∵,∴f(x)在[0,+∞)上单调递减
②当0<a<1时,由f′(x)<0,得
由f′(x)>0得
∴当0<a<1时,f(x)在,为增函数,
∴当0<a<1时,f(x)在[0,+∞)上不是单调函数;
综上,当且仅当a≥1时,f(x)在[0,+∞)上为单调函数.
(II)由(I)①知当a≥1时f(x)单调递减,不合;  由②知当f(x)在[1,+∞)上单调递增等价于:,∴,即a的取值范围是
点评:本题考查了导数在函数的单调性上的应用,解题时要学会对参数进行讨论,做到不重不漏,还要注意一题中两问间的关系
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网