题目内容

(1)用坐标法证明余弦定理:已知在△ABC中,角A、B、C所对的边分别为a、b、c,求证:a2=b2+c2-2bccosA;
(2)在△ABC中,角A、B、C所对的边分别为a、b、c,已知2b=a+c,求角B的最大值;
(3)如果三个正实数a,b,c满足a2=b2+c2-2bccosA,A∈(0,π),那么是否存在以a,b,c为三边的三角形?请说明理由.
(1)以A为坐标原点,AB所在直线为x轴,AB的垂线为y轴,建立平面直角坐标系,则C(bcosA,bsinA),B(c,0)
BC
=(c-bcosA,bsinA)

∴a2=(c-bcosA)2+(bsinA)2=b2+c2-2bccosA;

(2)由2b=a+c,得到b=
a+c
2

则cosB=
a2+c2-b2
2ac
=
a2+c2-(
a+c
4
)
2
2ac

=
3a2+3c2-2ac
8ac
4ac
8ac
=
1
2

由B∈(0,180°),cosB为减函数,
所以内角B的最大值为60°.
(3)不妨假设不存在以a,b,c为三边的三角形,即 c+b<a
∴c2+b2+2cb<b2+c2-2bccosA
∴cosA<-1
∵A∈(0,π),
∴矛盾
故假设不成立,即存在以a,b,c为三边的三角形
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网